
Polyray Grammar

What follows is the complete YACC grammar used to parse Polyray input files. Only the actions taken
at each rule have been deleted. The conventions used in the grammar are: keywords (terminal
symbols like "sphere") appear in all caps, i.e. SPHERE. All other grammar rules (nonterminals)
appear in lower case. The terminal symbols, including punctuation, are either recognized by the
lexical analyzer or by lookup from one of the symbol tables.

Note:    there is one ambiguity present in the grammar - the "if .. if .. else" construct.

B
background
bezier
bezier_points
blob
blobelement
blobelements
box

C
camera
camera_exper
camera_expers
conditional
cone
csg
csg_tree
cylinder

D
defined_token
definition
disc

E
element
elementlist
end_frame_decl
expression
expression_list

F
fexper
flush_statement
frame_decl
function

G
gridded

H
height_field

height_fn

I
if_else_part
if_statement

L
lathe
light
light_modifier_decl
light_modifier_decls

M
map_entries
map_entry

O
object
object_decls
object_list
object_modifier_decl
object_modifier_decls
outfile

P
parabola
point
pointlist
polygon
polynomial
ppatch

S
scene
sexper
shape_decl
smooth_height_field
smooth_height_fn
sphere
start_frame_decl
statement
surface
surface_declaration
surface_declarations
sweep
system_call

T
texture
texture_declaration
texture_declarations
texture_list
texture_modifier_decl
texture_modifier_decls

torus
total_frames_decl
transform
transform_declaration
transform_declarations

scene
 scene
 : elementlist
 ;

elementlist
 elementlist
 : elementlist element
 | element
 ;

element
 element
 : background
 | camera
 | definition
 | flush_statement
 | frame_decl
 | if_statement
 | light
 | object
 | outfile
 | system_call
 ;

defined_token
 defined_token
 : SURFACE_SYM
 | TEXTURE_SYM
 | OBJECT_SYM
 | EXPRESSION_SYM
 | TRANSFORM_SYM
 ;

definition
 definition
 : DEFINE defined_token surface
 | DEFINE defined_token texture
 | DEFINE defined_token object
 | DEFINE defined_token transform
 | DEFINE defined_token expression
 | DEFINE TOKEN surface
 | DEFINE TOKEN texture
 | DEFINE TOKEN object
 | DEFINE TOKEN transform
 | DEFINE TOKEN expression
 ;

object
 object
 : OBJECT '{' object_decls '}'
 | OBJECT_SYM
 | OBJECT_SYM '{' object_modifier_decls '}'
 ;

object_modifier_decls
 object_modifier_decls
 : object_modifier_decl object_modifier_decls
 | object_modifier_decl
 ;

object_modifier_decl
 object_modifier_decl
 : texture
 | transform
 | DITHER fexper
 | ROTATE point
 | ROTATE point ',' fexper
 | SHEAR fexper ',' fexper ',' fexper ',' fexper ','
 fexper ',' fexper
 | TRANSLATE point
 | SCALE point
 | U_STEPS fexper
 | V_STEPS fexper
 | SHADING_FLAGS fexper
 | BOUNDING_BOX point ',' point
 | ROOT_SOLVER FERRARI
 | ROOT_SOLVER VIETA
 | ROOT_SOLVER STURM
 ;

object_decls
 object_decls
 : shape_decl
 | shape_decl object_modifier_decls
 ;

shape_decl
 shape_decl
 : bezier
 | blob
 | box
 | cone
 | cylinder
 | csg
 | disc
 | function
 | gridded
 | height_field
 | height_fn
 | lathe
 | parabola
 | polygon
 | polynomial
 | ppatch
 | smooth_height_field
 | smooth_height_fn
 | sphere
 | sweep
 | torus
 ;

camera_exper
 camera_exper
 : ANGLE fexper
 | APERTURE fexper
 | AT point
 | ASPECT fexper
 | MAX_TRACE_DEPTH fexper
 | DITHER_RAYS fexper
 | DITHER_OBJECTS fexper
 | FOCAL_DISTANCE fexper
 | FROM point
 | HITHER fexper
 | YON fexper
 | RESOLUTION fexper ',' fexper
 | UP point
 ;

camera_expers
 camera_expers
 : camera_expers camera_exper
 | camera_exper
 ;

camera
 camera
 : VIEWPOINT '{' camera_expers '}'
 ;

light_modifier_decl
 light_modifier_decl
 : COLOR expression
 | transform
 | ROTATE point
 | ROTATE point ',' fexper
 | SHEAR fexper ',' fexper ',' fexper ',' fexper ','
 fexper ',' fexper
 | TRANSLATE point
 | SCALE point
 ;

light_modifier_decls
 light_modifier_decls
 : light_modifier_decl light_modifier_decls
 |
 ;

light
 light
 : LIGHT point ',' point
 | LIGHT point
 | SPOT_LIGHT point ',' point
 | SPOT_LIGHT point ',' point ',' point ',' fexper ','
 fexper ',' fexper
 | TEXTURED_LIGHT '{' light_modifier_decls '}'
 ;

background
 background
 : BACKGROUND expression
 ;

surface_declaration
 surface_declaration
 : COLOR expression
 | COLOR_MAP '(' map_entries ',' expression ')'
 | COLOR_MAP '(' map_entries ')'
 | AMBIENT expression ',' expression
 | AMBIENT expression
 | BUMP_SCALE expression
 | DIFFUSE expression ',' expression
 | DIFFUSE expression
 | FREQUENCY expression
 | LOOKUP_FUNCTION expression
 | MICROFACET PHONG expression
 | MICROFACET BLINN expression
 | MICROFACET GAUSSIAN expression
 | MICROFACET REITZ expression
 | MICROFACET COOK expression
 | MICROFACET expression
 | NORMAL expression
 | OCTAVES expression
 | PHASE expression
 | POSITION_FUNCTION expression
 | POSITION_SCALE expression
 | REFLECTION expression ',' expression
 | REFLECTION expression
 | SPECULAR expression ',' expression
 | SPECULAR expression
 | TRANSMISSION expression ',' expression ',' expression
 | TRANSMISSION expression ',' expression
 | TURBULENCE expression
 ;

surface_declarations
 surface_declarations
 : surface_declaration surface_declarations
 |
 ;

surface
 surface
 : SURFACE '{' surface_declarations '}'
 | SURFACE_SYM
 | SURFACE_SYM '{' surface_declarations '}'
 ;

texture_modifier_decls
 texture_modifier_decls
 : texture_modifier_decl texture_modifier_decls
 | texture_modifier_decl
 ;

texture_modifier_decl
 texture_modifier_decl
 : transform
 | ROTATE point
 | ROTATE point ',' fexper
 | SHEAR fexper ',' fexper ',' fexper ',' fexper ','
 fexper ',' fexper
 | TRANSLATE point
 | SCALE point
 ;

texture_declarations
 texture_declarations
 : texture_declaration texture_modifier_decls
 | texture_declaration
 ;

texture_declaration
 texture_declaration
 : surface
 | SPECIAL surface
 | NOISE surface
 | CHECKER texture ',' texture
 | HEXAGON texture ',' texture ',' texture
 | LAYERED texture_list
 ;

texture
 texture
 : TEXTURE '{' texture_declarations '}'
 | TEXTURE_SYM
 | TEXTURE_SYM '{' texture_modifier_decls '}'
 ;

texture_list
 texture_list
 : texture
 | texture_list ',' texture
 ;

transform_declaration
 transform_declaration
 : ROTATE point
 | ROTATE point ',' fexper
 | SCALE point
 | TRANSLATE point
 ;

transform_declarations
 transform_declarations
 : transform_declaration
 | transform_declarations transform_declaration
 ;

transform
 transform
 : TRANSFORM '{'
 transform_declarations '}'
 | TRANSFORM_SYM
 | TRANSFORM_SYM '{' transform_declarations '}'
 ;

bezier_points
 bezier_points
 : bezier_points ',' point
 | point
 ;

bezier
 bezier
 : BEZIER fexper ',' fexper ',' fexper ',' fexper ','
 bezier_points
 ;

blob
 blob
 : BLOB fexper ':' blobelements
 ;

blobelements
 blobelements
 : blobelement
 | blobelements ',' blobelement
 ;

blobelement
 blobelement
 : fexper ',' fexper ',' point
 | SPHERE point ',' fexper ',' fexper
 | CYLINDER point ',' point ',' fexper ',' fexper
 | PLANE point ',' fexper ',' fexper ',' fexper
 | TORUS point ',' point ',' fexper ',' fexper ',' fexper
 ;

box
 box
 : BOX point ',' point
 ;

cone
 cone
 : CONE point ',' fexper ',' point ',' fexper
 ;

csg
 csg
 : csg_tree
 ;

csg_tree
 csg_tree
 : '(' csg_tree ')'
 | csg_tree '+' csg_tree
 | csg_tree '-' csg_tree
 | csg_tree '*' csg_tree
 | '~' csg_tree
 | csg_tree '&' csg_tree
 | object
 ;

cylinder
 cylinder
 : CYLINDER point ',' point ',' fexper
 ;

disc
 disc
 : DISC point ',' point ',' fexper
 | DISC point ',' point ',' fexper ',' fexper
 ;

function
 function
 : FUNCTION expression
 ;

gridded
 gridded
 : GRIDDED sexper ',' object_list
 ;

object_list
 object_list
 : object
 | object object_list
 ;

height_field
 height_field
 : HEIGHT_FIELD sexper
 ;

height_fn
 height_fn
 : HEIGHT_FN fexper ',' fexper ','
 fexper ',' fexper ',' fexper ',' fexper ','
 expression
 | HEIGHT_FN fexper ',' fexper ',' expression
 ;

lathe
 lathe
 : LATHE fexper ',' point ',' fexper ',' pointlist
 ;

parabola
 parabola
 : PARABOLA point ',' point ',' fexper
 ;

polygon
 polygon:
 POLYGON fexper ',' pointlist
 ;

polynomial
 polynomial
 : POLYNOMIAL expression
 ;

ppatch
 ppatch
 : PATCH point ',' point ',' point ',' point ',' point ','
 point
 ;

smooth_height_field
 smooth_height_field
 : SMOOTH_HEIGHT_FIELD sexper
 ;

smooth_height_fn
 smooth_height_fn
 : SMOOTH_HEIGHT_FN fexper ',' fexper ','
 fexper ',' fexper ',' fexper ',' fexper ','
 expression
 | SMOOTH_HEIGHT_FN fexper ',' fexper ',' expression
 ;

sphere
 sphere
 : SPHERE point ',' fexper
 ;

sweep
 sweep
 : SWEEP fexper ',' point ',' fexper ',' pointlist
 ;

torus
 torus
 : TORUS fexper ',' fexper ',' point ',' point
 ;

fexper
 fexper
 : expression
 ;

point
 point
 : expression
 ;

sexper
 sexper
 : expression
 ;

pointlist
 pointlist
 : point
 | pointlist ',' point
 ;

expression
 expression
 : '(' expression ')'
 | '[' expression_list ']'
 | '<' expression ',' expression '>'
 | '<' expression ',' expression ',' expression '>'
 | expression '[' expression ']'
 | '(' conditional '?' expression ':' expression ')'
 | expression '^' expression
 | expression '%' expression
 | expression '*' expression
 | expression '.' expression
 | expression '/' expression
 | expression '+' expression
 | expression '-' expression
 | '-' expression %prec UMINUS
 | '|' expression '|'
 | COLOR_MAP '(' map_entries ',' expression ')'
 | COLOR_MAP '(' map_entries ')'
 | NOISE '(' expression ')'
 | NOISE '(' expression ',' expression ')'
 | ROTATE '(' expression ',' expression ')'
 | ROTATE '(' expression ',' expression ',' expression ')'
 | END_FRAME
 | START_FRAME
 | TOTAL_FRAMES
 | TOKEN '(' expression_list ')'
 | TOKEN
 | NUM
 | STRING
 | EXPRESSION_SYM
 ;

expression_list
 expression_list
 : expression
 | expression ',' expression_list
 ;

conditional
 conditional
 : '(' conditional ')'
 | expression '<' expression
 | expression '>' expression
 | expression LTEQ_SYM expression
 | expression GTEQ_SYM expression
 | expression EQUAL_SYM expression
 | conditional AND_SYM conditional
 | conditional OR_SYM conditional
 | '!' conditional
 ;

map_entry
 map_entry
 : '[' fexper ',' fexper ',' point ',' point ']'
 | '[' fexper ',' fexper ',' point ',' fexper ',' point ','
 fexper ']'
 ;

map_entries
 map_entries
 : map_entry map_entries
 | map_entry
 ;

frame_decl
 frame_decl
 : end_frame_decl
 | start_frame_decl
 | total_frames_decl
 ;

end_frame_decl
 end_frame_decl
 : END_FRAME fexper
 ;

start_frame_decl
 start_frame_decl
 : START_FRAME fexper
 ;

total_frames_decl
 total_frames_decl
 : TOTAL_FRAMES fexper
 ;

outfile
 outfile
 : OUTFILE TOKEN
 | OUTFILE STRING
 ;

flush_statement
 flush_statement
 : FILE_FLUSH fexper
 ;

system_call
 system_call
 : SYSTEM '(' expression_list ')'
 ;

statement
 statement
 : '{' elementlist '}'
 | element
 ;

if_else_part
 if_else_part
 : ELSE statement
 |
 ;

if_statement
 if_statement
 : IF '(' conditional ')' statement if_else_part
 ;
ÿ ;

What's New in Version 1.7
Changes:

 Added parametric surfaces. Now possible to define a mesh object (surface) where each point in the
mesh is a function
 of u and v.

 Added bump maps

 Added noeval to definitions to cure a particle system bug

 Added support for GIF and JPEG images in textures, etc.

 Added support for system calls in 386 version. Can now call an external program from within
Polyray.

 The default shading flags for raytracing is now set to:
SHADOW_CHECK + REFLECT_CHECK + TRANSMIT_CHECK +UV_CHECK +
CAST_SHADOW

The difference is that it is no longer assumed that surfaces should be lit on both sides (normal
correction), this boosts rendering speed at the cost of funny shading once in a while.
UV_CHECK was added to allow turning off checking of u/v bounds on objects (also a
speedup).

 Changed u_steps, v_steps back to the way it was in v1.5. Now for all objects it is uniformly
subdivided by exactly the value of u_steps/v_steps.

 Significantly enhanced the function object. Polyray will now accept any predefined
function as part of the function definition.

 Added NURBS objects. (Sorry, no trim curves yet.)

 Displacement functions are now possible on CSG objects. They also work in raytracing
now (although you may need to really boost the u_steps and v_steps values to get good results).

 Now supports /* ... */ comments (C style). No you can't nest them. You can nest the
single line // comments within them.

 Internal modifications made that should result in less memory usage by objects. Your
mileage may vary.

 Modified numeric input to allow numbers like 1., .1

 Fixed up bug in polygon tracing that caused them to drop out if they were oriented in just
the right way.

 Added a second raw triangle output format - only outputs the vertex coordinates. This
makes it more compatible with RAW2POV. Previous style with normals and u/v still available.

 Removed BSP tree bounding. It wasn't any faster than slabs and locked up every once
in a while.

 Added a glyph object to support TrueType style extruded surfaces. Glyphs are always
closed at the top and bottom, they may have both straight and curved sides in the same shape. A
program to extract TrueType information and write into Polyray glyph format is included with the data file
archive.

 Support for simple particle systems. Can define birth and death conditions, # of objects
to generate, and ability to bounce off other objects.

 Added many more VESA display modes. There are now 5 SVGA 256 color modes, 5
Hicolor modes, and 5 truecolor modes supported. If your board doesn't support a selected mode,
Polyray tries a lower res one having the same # of bytes per pixel.

Polyray v1.7 Help Contents
About Polyray Help

This Help file describes the input format and capabilities of the Polyray raytracing program, and gives
an overview of the basic commands, functions and syntax of Polyray.

 If you find yourself deep inside this document without a clue as to your whereabouts, don't
worry! Just look for this Up button in the non-scrolling region at the top of the screen. It steps you up
one level at a time until you're back at one of the following main topics...

Topics:
Introduction & Shareware Information

Detailed Description of the Polyray Input Format

File Formats

Algorithms

Sample Files

Polyray Grammar

What's New in Version 1.7

Bibliography

Quick Reference

That's the Idea!
Unfortunately, this is only a demo button.
The real Up button will be found at the top of
the screen in the gray non-scrolling regions
of nested topics...

Introduction & Shareware Information
The program "Polyray" is a rendering program for producing scenes of 3D shapes and surfaces. The
means of description range from standard primitives like box, sphere, etc. to 3 variable polynomial
expressions, and finally (and slowest of all) surfaces containing transcendental functions like sin, cos,
log. The files associated with Polyray are distributed in three pieces: the executable, a collection of
document files, and a collection of data files.

Since version 1.5, Polyray has been a Shareware program, rather than Freeware. If you enjoy this
program, use it frequently, and can afford to pay a registration fee, then send $35 to:

Alexander Enzmann
20 Clinton St.
Woburn, Ma 01801
USA

Please include your name and mailing address.

If you formally register this program, you will receive free the next release of Polyray, when it occurs.
In addition you will be contributing to my ability to purchase software tools to make Polyray a better
program. If you don't register this program, don't feel bad - I'm poor too - but you also shouldn't
expect as prompt a response to questions or bugs. Consider it guilt-free Shareware. Note that all of
the sample files in PLYDAT are Public Domain, you may use them freely. Note that the Polyray
executables and the Polyray documents (including this document) are copyrighted.

If you want a good reference book about raytracing, buy the book: "Introduction to Ray Tracing",
edited by Andrew Glassner, Academic Press, 1989. That book is excellent and will provide many of
the background details that are not contained here. For an abbreviated list of Polyray's syntax, see
the topic Quick Reference.

This document contains a step by step description of a simple scene file to get you familiar with the
structure of Polyray data. By working through the examples and by reviewing the examples in the
data archive, you will be able to see how the various features are used.

It is assumed that you are familiar with files compressed with PKZIP (version 2.04 is required) and
setting the PATH variable to make an executable visible to DOS. If you aren't, then get some help
from someone who has used ZIP and is familiar with configuring a DOS system.

The data files are ASCII text, the output image file format (see Output Files for the supported input
and output formats) supported is Targa. Input images (for texturing, height fields, etc.) may be: Targa
(all variants defined in the Truevision spec), GIF (both 87a and 89a should work), or JPEG (JFIF
format). The Targa format is supported by many image processing programs so if you need to
translate between Targa and something else it is quite simple. The utility CJPEG, which converts
from Targa to JPEG has been included in the utility archive. Polyray is case sensitive, so the
following ways of writing foo are all considered different: Foo, FOO, and foo. For an abbreviated list

of Polyray's syntax, see the Quick Reference.

Polyray supports a number of VESA compliant display modes from the standard 320x200 VGA mode
through to 24 bits at high resolution. If you don't have a VESA compliant graphics board you will
either be limited to standard VGA or you will need to find a VESA driver for your board.

The standard executable requires an IBM PC compatible with at least a 386 and 387, and a minimum
of 2 Mbytes of RAM to run. Other memory models will be made available if enough requests are
made. The distributed executable uses a DOS extender in order to grab as much memory as is
available. It has been successfully run with HIMEM.SYS, QEMM386.SYS, and 386MAX.SYS.
Under Windows it will run in a DOS window, however if you use the graphics display it will need to be
run full screen.

There have been a number of problems reported of conflicts between the DOS extender used in
Polyray and memory managers. These all involve DOS 6.0 or later. In general the conflict results in
an error message along the lines of:

Previously loaded software is neither VCPI or DPMI compliant

If you see this message, or one like it, you may need to disable EMS handling from you CONFIG.SYS
file. A typical change is:

 EMM386 NOEMS

For some people, just running Polyray in a DOS box under Windows is sufficient to eliminate memory
manager problems. As a first step in resolving this type of problem, try setting up a CONFIG.SYS
and AUTOEXEC.BAT with as few entries as possible.

I'm interested in any comments/bug reports. I can be reached via email by:

CompuServe as:    Alexander Enzmann 70323,2461
Internet as:    xander@mitre.org

or via snailmail at:

Alexander Enzmann
20 Clinton St.
Woburn, Ma 01801
USA

Topics
Acknowledgments

Useful Tools

Overview of Polyray

Quick Demo

Command Line Options

Initialization File

Rendering Options

Acknowledgments and Other Legal Stuff
There is no warranty, explicit or implied, of the suitability of this software for any purpose. This
software is provided as is, and the user of this software assumes the entire risk as to its quality,
accuracy, and for any damages resulting from the use of this software.

No part of this package may be included as part of a commercial package without explicit written
permission.

This original code for this program was based on the "mtv" ray - tracer, written (and placed in the
public domain) by Mark VandeWettering.

This software is based in part on the work of the Independent JPEG Group.

The Graphics Interchange Format © is the copyright property of CompuServe Incorporated. The
service marks Graphics Interchange Format(sm), and GIF(sm) are owned by CompuServe
Incorporated.

Thanks to Rob McGregor at Screaming Tiki (tm) for this Help file. Many thanks go to David Mason
for his numerous comments and suggestions (and for adding a new feature to DTA every time I
needed to test something). Thanks also to the Cafe Pamplona in Cambridge Ma. for providing a
place to get heavily caffeinated and rap about ray tracing and image processing for hours at a time.

Kudos go to Jeff Bowermaster, Alfonso Hermida, and Dan Richardson for extensive beta testing of
Polyray and their many suggestions for improvements. Additionally, many thanks to the folks that let
me include some of their scenes in the data archive: Jeff Bowermaster, Dan Farmer, and Will Wagner.

Useful Tools
There are several types of tools that you will want to have to work with this program (in relative order
of importance):

 An ASCII text editor for preparing and modifying input files.

 A picture viewer for viewing images.

 An image processing program for translation between Targa and some other format.

 An animation generator that will take a series of Targa images and produce an animation
file.

 An animation viewer for playing an animation on the screen.

There are a number of tools out there that can be used in conjunction with Polyray. I've somewhat
arbitrarily divided them into categories, with no particular order of importance. I'm pretty sure all of
the following are available from CompuServe in either the GRAPHDEV or GRAPHSUP forums.

Animation Utilities
Many of the features in Polyray are specifically to support the generation of multiple frames. Once
the frames are generated, additional tools are necessary to format and play the resulting animation.
Top picks in this area are:

 DTA (David Mason)

 DFV (David Mason)

 PLAY (Trilobyte)

Dave's Targa Animator (DTA) may be the only tool you need for creating FLI/FLCs from images,
converting images between formats, compositing images, etc. For building animations with Polyray,
all you need is DTA and a FLI/FLC player.

DFV and PLAY80 do a single thing. They play FLI/FLC animations on a VGA or SVGA screen.
Either one will do the job for 8 bit FLI and FLC animations. However, DFV can handle a few formats
that aren't supported by PLAY (in particular the 16 and 24 bit animation formats produced by DTA).

Modelers
There are a couple of really good Shareware modelers out there. Both of them allow the creation of
objects in native form (rather than as hundreds of polygons), and provide fast, interactive,
development of scenes using wireframe displays. The modelers are:

 POVCAD (Alfonso Hermida and Rob McGregor)

 MORAY (Lutz Kretzschmar)

POVCAD is a graphical modeling program with both Windows and DOS versions. POVCAD allows
you to quickly build models through point and click in a wireframe environment. Both Polyray and
POV-Ray data files can be generated. A full featured text editor with a one-click rendering interface
is included.

Actually, MORAY is a DOS modeler for POV-Ray, but it is mentioned here since it is a very good
shareware modeler. Perhaps if enough people ask Lutz to add Polyray support...

Miscellaneous Programs

 CTDS (Truman Brown)

 RAW2POV (Steve Anger)

 3DS2POV (Steve Anger)

 SPD (Eric Haines, updates by Eduard Schwan & Alexander Enzmann)

CTDS is dot-to-dot for renderers. By creating a file listing lots of points and associated radii, this
program will connect them together using spheres and cones. It can output to the native input of
several renderers, including: Polyray, POV-Ray, and Vivid. This programs really fun for creating
abstract shapes.

RAW2POV is a conversion program that takes ASCII files of triangle vertices and creates an input for
various renderers. It can also examine the triangles and calculate normals for the vertices, giving a
very smooth looking object when rendered. This is a must have utility if you are going to be
converting polygonal objects into a form that can be used by Polyray.

3DS2POV converts model files built by the costly 3DS modeller/renderer into the native input of
various renderers. Really nice to have if you are getting models in 3DS format or if you are fortunate
enough to have 3DS yourself.

SPD is a library of C code originally developed to benchmark various renderers. Similar in nature to
OORT (described below), it allows you to write short C programs that will generate scene files for a
number of different renderers. Currently supported are: Polyray, POV-Ray, Vivid Rayshade Rend
386, RTrace, NFF, and QRT. There are also routines for displaying the models in wireframe (have to
be tuned for individual compilers and platforms). New output modes and rendering formats are still
being added.

Other Raytracers
If you want to explore the world of raytracers, below is a list of what I consider the best of the
Shareware/Freeware world. (No flame wars please, these are just ones I happen to have and like.)
Each has it's own strengths and weaknesses. Overall, you will learn something from working with
each one of them.

 POV-Ray (The POV-Ray Team)

 Vivid (Stephen Coy)

 Rayshade (Craig Kolb)

 OORT (Nicholas Wilt)

POV-Ray is the camel that you let warm it's nose in your tent. It's starting to really dominate the
scene. It's strengths are in a broad set of features together with a huge level of support. The
authors are available on CompuServe (Graphdev) to answer questions, there are an astonishing
number of utilities, and the source code is available for porting it to different platforms.

For a really fast raytracer, Vivid can't be beat. It's DOS based only, but the registered version comes
with a DOS extender for those really huge scene files. Shape primitives are somewhat limited, but
the texturing capabilities and camera lens features are very strong.

Rayshade is an old standard for the UNIX workstation crowd. It has just about all of the shapes you
would want, texturing approximately on a par with POV-Ray, and an interesting gridded optimization
technique. It doesn't do graphics, and it's really slow if you don't manually tune the optimization. On
the plus side it has a long background of people using it and will compile on just about anything
(source code is available).

A real newcomer, OORT is a whole bunch of C++ code (classes, objects, whatever) for creating and
then rendering scenes. No native input language yet (other than minimal NFF support), so you really
need a C++ compiler to use it. (This is likely to change as Nicholas is really energetic and seems to
want to throw just about everything into OORT.)

References
Over the last year or so there have been several books published that describe ways to use Polyray.
Although these books were written about v1.6a, almost all of the content is still valid for v1.7. The
differences are pretty well described in the topic Whats New. Other differences are buried here and
there in this document. (I don't remember what they all are, so I won't try to list them.)

Of the books published, the three that really dig into using Polyray for various tasks, from modeling to
animations are:

Making Movies on Your PC
David Mason & Alexander Enzmann
Waite Group Press, 1993
ISBN 1-878739-41-7

Adventures in Ray Tracing
Alfonso Hermida
Que, 1993
ISBN 1-56529-555-2

Animation How-To CD
Jeff Bowermaster
Waite Group Press, 1994
ISBN 1-878739-54-9

There's good stuff in each of these books, so it's not unreasonable to actually get all of them. (I don't
get royalties from any of them, so this is a reasonably shameless plug.)

Overview of Polyray
 See Also

The following features are supported:

 Viewpoint (camera) characteristics

 Positional (point), directional (spotlight) light sources, and functional (textured) lights

 Background color

 Surface characteristics of objects

 Shape primitives: Bezier patch, blob, box, cone, cylinder, disc, glyph, implicit function,
height field, lathe surface, NURBS, parabola, parametric function, polygon, polynomial function, sphere,
sweep surface, torus, triangular patches

 Animation support

 Conditional processing

 Include files

 Named values and objects

 Constructive Solid Geometry (CSG)

 Grids of objects

 User definable (functional) textures

 Initialization file for default values

See Also
New in Version 1.7

Quick Demo
This section describes one of the simplest possible data files: a single sphere and a single light
source. In what follows; anything following a double slash, "//" is a comment, and is ignored by
Polyray. The data file follows in monospace type. You can either use the file "sphere.pi" in the data
archive, or copy and paste these declarations into a new file (with the copy button above).

// We start by setting up the camera. This is where the eye
// is located, and describes how wide a field of view will
// be used, and the resolution (# of pixels wide and high)
// of the resulting image.

viewpoint {
 from <0,0,-8> // The location of the eye
 at <0,0,0> // The point that we are looking at
 up <0,1,0> // The direction that will be up
 angle 45 // The vertical field of view
 resolution 160, 160 // The image will be 160x160 pixels
}

// Next define the color of the background. This is the
// color that is used for any pixel that isn't part of an
// object. In this file it will color the image around the
// sphere.

background skyblue

// Next is a light source. This is a point light source a
// little above, to the left, and behind the eye.
light <-10, 3, -20>

// The following declaration is a "texture" that will be
// applied to the sphere. It will be red at every point but
// where the light is reflecting directly towards the eye -
// at that point there will be a bright white spot.
define shiny_red
texture {
 surface {
 color red
 ambient 0.2 // Always a little red in the sphere
 diffuse 0.6 // Where the light is hitting the
 // sphere, the color of the sphere
 // will be a little brighter.
 specular white, 0.5 // There will be a white highlight.
 microfacet Cook 5 // The white highlight drops to half
 // its intensity at an angle of 5
 // degrees.
 }

 }

// Finally we declare the sphere. It sits right at the origin,
// and has a radius of two. Following the declaration of the
// sphere, we associate the texture declared above.
object {
 sphere <0, 0, 0>, 2
 shiny_red
 }

Now that we have a data file, lets render it and show it on the screen. First of all we can look at a
wireframe representation of the file. Enter the following commands (DOS prompts are in capitals).

C> polyray sphere.pi -r 2 -V 1 -W

An outline of the sphere will be drawn on the screen, press any key to get back to DOS
Next lets do a raytrace. Enter the following:

C> polyray sphere.pi -V 1

The sphere will be drawn a line at a time, when it is done you will be returned to DOS.

The output image will be the default output file, "out.tga". You can view it directly with VPIC or
CSHOW (although VPIC will not have the full range of colors that were generated by the raytrace). If
you have PICLAB, then the following commands will load the image, map its colors into a spectrum
that matches the colors in the image, then will display it:

C> piclab
> tload out
> makepal
> map
> show

Hit any key to get back to PICLAB's command line
> quit
C>

You should see a greatly improved image quality over the display that is shown during tracing.

Now that you have seen a simple image, you have two options:

1.    Go render some or all of the files in the data archive, or

2.    Continue reading the documents.

For those of you that prefer immediately getting started, there are a series of DOS batch files that
pretty well automate the rendering of the sample scenes. (When you unzip the data files, remember
to use the -d switch so that all the subdirectories will be installed properly.) The sample scenes in
PLYDAT will render on a 33Mhz 486 in less than a day. The animation examples will take an
additional 4-5 days (and chew up quite a few megabytes of disk space).

Command Line Options
A number of operations can be manipulated through values in an initialization file, within the data file,
or from the command line (processed in that order, with the last read having the highest precedence).
The command line values will be displayed if no arguments are given to Polyray.

The values that can be specified at the command line, with a brief description of their meaning are:

-a n Antialiasing (0=none, 1=filter, 2-4=adaptive)

-b pixels Set the maximum number of pixels that will be calculated
between file flushes

-B Flush the output file every scan line

-d  Output the image as a depth map

-o filename The output file name, the default output file name if not
specified is "out.tga"

-p bits/pixel Set the number of bits per pixel in the output file (must be
one of 8, 16, 24, 32)

-P palette Which palette option to use [0=grey, 1=666, 2=884]

-q flags Turn on/off various global shading options

-Q Abort if any key is hit during trace

-r renderer Which rendering method: [0=raytrace, 1=scan convert,
2=wireframe, 3=raw tri, 4=u/v tri]

-R Resume an interrupted trace.

-S samples # of samples per pixel when performing focal blur

-t status_vals Status display type [0=none, 1=totals, 2=line, 3=pixel].

-T threshold Threshold to start adaptive antialiasing

-u Write the output file in uncompressed form

-v Trace from bottom to top

-V mode Use VGA display while tracing [0=none,1-5=8 bit, 6-10=15
bit, 11-15=24 bit]

-W Wait for key before clearing display

-x columns Set the x resolution

-y lines Set the y resolution

-z start_line Start a trace at a specified line

If no arguments are given then Polyray will give a brief description of the command line options.

Initialization File
The first operation carried out by Polyray is to read the initialization file "polyray.ini". This file can be
used to tune a number of the default variables used during rendering. This file must appear in the
current directory. This file doesn't have to exist, it is typically used as a convenience to eliminate
retyping command line parameters.

Each entry in the initialization file must appear on a separate line, and have the form:
default_name default_value

The names are text. The values are numeric for some names, and text for others. The allowed
names and values are:

abort_test true/false/on/off

alias_threshold [Min value to start adaptive antialiasing]

antialias none/filter/adaptive1/adaptive2

display none/vga1-vga5/hicolor1-hicolor5/truecolor1-
truecolor5

max_level [max depth of recursion]

max_samples [# samples for focal blur]

optimizer none/slabs

pixel_size [8, 16, 24, 32]

pixel_encoding none/rle

renderer ray_trace/scan_convert/wire_frame/
raw_triangles/uv_triangles

shade_flags [default/bit mask of flags, (see topic Shading
Quality Flags)]

shadow_tolerance [minimum distance for blocking objects]

status none/totals/line/pixel

warnings on/off

A typical example of "polyray.ini" would be:
abort_test on
alias_threshold 0.05
antialias adaptive
display vga
max_samples 8
pixel_size 24
status line

If no initialization file exists, then Polyray will use the following default values:
abort_test on
alias_threshold 0.2
antialias none
display none
max_level 5
max_samples 4

optimizer slabs
pixel_size 16
pixel_encoding rle
renderer ray_trace
shade_flags default
shadow_tolerance 0.001
status none
warnings on

Rendering Options
Polyray supports four very distinct means of rendering scenes: raytracing, polygon scan conversion,
wireframe, and raw triangle output. Raytracing is often a very time consuming process, however the
highest quality of images can be produced this way. Scan conversion is a very memory intensive
method, but produces a good quality image quickly. Wireframe gives a very rough view of the scene
in the fastest possible time. (Note that there is no output file when wireframe is used.) Raw triangle
output produces an ASCII file of triangles describing the scene.

Raytracing
Raytracing is a very "compute intensive" process, but is the method of choice for a final image. The
quality of the images that can be produced is entirely a function of how long you want to wait for
results. There are certain options that allow you to adjust how you want to make tradeoffs between:
quality, speed, and memory requirements.

The basic operation in raytracing is that of shooting a ray from the eye, through a pixel, and finally
hitting an object. For each type of primitive there is specialized code that helps determine if a ray
has hit that primitive. The standard way that Polyray generates an image is to use one ray per pixel
and to test that ray against all of the objects in the data file. Antialiasing or focal blur will result in
more than one ray per pixel, increasing rendering time.

Antialiasing
The representation of rays is as a 1 dimensional line. On the other hand, pixels and objects have a
definite size. This can lead to a problem known as "aliasing", where a ray may not intersect an
object because the object only partially overlaps a pixel, or the pixel should have color contributed by
several objects that overlap it, none of which completely fills the pixel. Aliasing often shows up as a
staircase effect on the edges of objects.

Polyray offers a couple of ways to reduce aliasing:

1. Filtering

2. Adaptive oversampling.

The two initialization (and command line) variables that will affect the performance of adaptive
antialiasing are "alias_threshold" and "max_samples". The first is a measure of how different a pixel
must be with respect to its neighbors before antialiasing will kick in. If a pixel has the value: <r1, g1,
b1>, and it's neighbor has the value <r2, g2, b2> (RGB values between 0 and 1 inclusive), then the
"distance" between the two colors is:

dist = sqrt((r1 - r2)^2 + (b1 - b2)^2 + (g1 - g2)^2)

This is the standard Pythagorean formula for values specified in RGB. If "dist" is greater than the
value of "alias_threshold", then extra rays will be fired through the pixel in order to determine an
averaged color for that pixel.

Focal Blur
The default viewpoint declaration is a pinhole camera model. All objects are in sharp focus, no
matter how near or far they are. By adjusting the aperture and focal_distance parameters it is
possible to simulate a real world camera. Objects close to the focal distance will be in focus and
those closer or farther will be blurred. Three parameters affect the blur: aperture, focal_distance,
and max_samples.

Adjusting the size of aperture allows you to adjust how much of the scene is in focus. Adjusting

focal_distance gives you control over what part of the scene is in focus. If focal_distance isn't set,
Polyray will set it so that the point defined by the 'at' declaration is in focus. The declaration
max_samples allows you to fine tune how smooth the final image appears. If you use a large value
for aperture, you will probably need to increase max_samples as well to avoid a grainy appearance in
the image.

Also note that focal blur and adaptive antialiasing interact with each other. Polyray attempts to
distribute the focal blur rays into the antialiasing rays, however there will be more rays cast than
would have been using either method alone. It's best to leave the antialiasing off and the value of
max_samples small until producing the final image.

Shading Quality Flags
By specifying a series of bits, various shading options can be turned on and off. The value of each
flag, as well as the meaning are:

1 - shadow_check Shadows will be generated

2 - reflect_check  Reflectivity will be tested

4 - transmit_check Check for refraction

8 - two_sides If on, highlighting will be performed on both sides of a
surface.

16 - uv_check Calculate the uv-coordinates of each point.

32 - cast_shadow Determines if an object can cast a shadow.

The default settings of these flags are:

raytracing Shadow_Check + Reflect_Check + Transmit_Check +
UV_Check (= 23)

scan conversion [Two_Sides, = 8]

wireframe Not applicable

raw triangles Not applicable

Note that the flag, cast_shadow, is only meaningful for declarations of shading flags for an object, not
for the renderer. See the topic Shading Quality Flags for more information. If you want to turn off
shadows in a raytrace, then you would leave out the shadow_check flag (conversely if you wanted
shadows in scan conversion you would add it).

The assumption made is that during raytracing the highest quality is desired, and consequently every
shading test is made. The assumption for scan conversion is that you are trying to render quickly,
and hence most of the complex shading options are turned off.

If any of the three flags Shadow_Check, Reflect_Check, or Transmit_Check are explicitly set and
scan conversion is used to render the scene, then at every pixel that is displayed, a recursive call to
the raytracer will be made to determine the correct shading. Note that due to the faceted nature of
objects during scan conversion, shadowing, and especially refraction can get messed up during scan
conversion.

For example if you want to do a scan conversion that contains shadows, you would use the following:
polyray xxx.pi -r 1 -q 1

or if you wanted to do raytracing with no shadows, reflection turned on, transparency turned off, and
with diffuse and specular shading performed for both sides of surfaces you would use options 2 and

8:
polyray xxx.pi -q 10

NOTE:    Texturing cannot be turned off.

Scan Conversion
In order to support a quicker render of images Polyray can render most primitives as a series of
polygons. Each polygon is scan converted using a Z-Buffer for depth information, and a S-Buffer for
color information.

The scan conversion process does not by default provide support for: shadows, reflectivity, or
transparency. It is possible to instruct Polyray to use raytracing to perform these shading operations
through the use of either the global shade flags or by setting shade flags for a specific object. An
alternative method for quickly testing shadows involves using depth mapped lights (see the topic
Depth Mapped Lights). Reflections can be simulated with a multipass approach where an image
map or environment map is calculated and then applied to the reflective object.

The memory requirements for performing scan conversion can be quite substantial. You need at
least as much memory as is required for raytracing, plus at least 7 bytes per pixel for the final image.
In order to correctly keep track of depth and color - 4 bytes are used for the depth of each pixel in the
Z-Buffer (32 bit floating point number), and 3 bytes are used for each pixel in the S-Buffer (1 byte
each for red, green, and blue).

During scan conversion, the number of polygons used to cover the surface of a primitive is controlled
using the keywords "u_steps", and "v_steps" (or combined with uv_steps). These two values control
how many steps around and along the surface of the object values are generated to create polygons.
(see the topic UV Bounds) The higher the number of steps, the smoother the final appearance.
Note however that if the object is very small then there is little reason to use a fine mesh - hand tuning
is sometimes required to get the best balance between speed and appearance.

Generating iso-surfaces for blobs, polynomial functions and implicit functions, followed by
polygonalization of the surfaces is performed using a marching cubes algorithm. Currently the value
of "u_steps" determines the number of slices along the x- axis, and the value of "v_steps" controls the
number of slices along the y-axis and along the z-axis. Future versions may introduce a third value
to allow independent control of y and z.

Note that running Polyray in a Windows DOS box is a way to increase the memory available for
performing scan conversion. Polyray will take advantage of the virtual memory capabilities of
Windows, allowing for larger image to be rendered.

Also note that there are images that render slower in scan conversion and wireframe that raytracing!
These are typically those files that contain large numbers of spheres and cones such as data files
generated by CTDS or large gridded objects. The scan conversion process generates every
possible part of each object, whereas the raytracer is able to sort the objects and only display the
visible parts of the surfaces. If you run into this situation, a speedup trick you can use is to set the
values of uv_steps very low for the small objects (e.g., uv_steps 6, 4 for spheres).

Wireframe
In most cases the fastest way to display a model is by showing a wireframe representation. Polyray
supports this as a variant of the scan conversion process. When drawing a wireframe image only the
edges of the polygons that are generated as part of scan conversion are drawn onto the screen. A
big problem with wireframe representations is that CSG operations are not performed. If you use
CSG intersection, difference, or clipping, you may see a lot of stuff that will not appear in the final
image.

Depth Files
Instead of creating an image, it is possible to instruct Polyray to create a file that contains depth
information. Each pixel in the resulting Targa will contain the distance from the eye to the first
surface that is hit. The format of the files is identical to the formats used by height fields (see File
Based Height Fields).

For example, to create a 24 bit depth file, the following command could be used:

polyray sphere.pi -p 24 -d

Polyray will disable any antialiasing when creating depth files(it is inappropriate to average depths).

There are three common applications for depth files: shadow maps (Depth Lights), height fields, and
creating Random Dot Stereograms (RDS).

RDS images are an interesting way to create a 3D picture that doesn't require special glasses. The
program RDSGEN (available in the GRAPHDEV forum on CompuServe) will accept Polyrays 24 bit
depth format and create an RDS image.

Raw Triangles
A somewhat odd addition to the image output formats for Polyray is the generation of raw triangle
information. What happens is very similar to the scan conversion process, but rather than draw
polygons, Polyray will write a text description of the polygons (after splitting them into triangles). The
final output is a (usually long) list of lines, each line describing a single smooth triangle. The format
of the output is one of the following:

x1 y1 z1 x2 y2 z2 x3 y3 z3
or

x1 y1 z1 x2 y2 z2 x3 y3 z3 nx1 ny1 nz1 nx2 ny2 nz2 nx3 ny3 nz3
u1 v1 u2 v2 u3 v3

If the output is raw triangles then only the three vertices are printed. If uv_triangles are being
created, then the normal information for each of the vertices follows the vertices and the u/v values
follow them. The actual u/v values are specific to the type of object being generated.

Currently I don't have any applications for this output, but the first form is identical to the input format
of the program RAW2POV. The intent of this feature is to provide a way to build models in polygon
form for conversion to the input format of another renderer.

For example, to produce raw triangle output describing a sphere, and dump it to a file you could use
the command:

polyray sphere.pi -r 3 > sphere.tri

For full vertex, normal, and uv information, use the following command:

polyray sphere.pi -r 4 > uvsphere.tri

Nothing is drawn on screen while the raw triangles are generated, so typically you would turn off the
graphics display (-V 0) when using this option.

Display Options (IBM format only)
Polyray supports 15 distinct VESA display modes. The table below lists the modes, the command
line value to use with '-V x', and the entry in the file polyray.ini to set a default video mode.

Resolution Colors Command Line Initialization Name
N/A none -V 0 none

320x200 256 -V 1 vga/vga1

640x480 256 -V 2 vga2

800x600 256 -V 3 vga3

1024x768 256 -V 4 vga4

1280x1024 256 -V 5 vga5

320x200 32K -V 6 hicolor/hicolor1

640x480 32K -V 7 hicolor2

800x600 32K -V 8 hicolor3

1024x768 32K -V 9 hicolor4

1280x1024 32K -V 10 hicolor5

320x200 16M -V 11 truecolor1

640x480 16M -V 12 truecolor2

800x600 16M -V 13 truecolor3

1024x768 16M -V 14 truecolor4

1280x1024 16M -V 15 truecolor5

It is pretty unlikely you have a board that will do all of the resolutions listed above. For that reason,
Polyray will check to see if the requested mode is possible on your board. If not, another mode will
be selected. The first priority is to find a mode with the same # of bits per pixel (even if the screen
resolution is lower). The second priority is to drop to the next lower # of bits per pixel, starting at the
highest resolution possible.

Setting the default display mode in polyray.ini is done by inserting a line of the form:

display hicolor1

To override a display mode from the command line you would do something
like:

C> polyray sphere.pi -V 12

Note that using the line status display will mess up some of the higher graphics modes. If this
bothers you, use the flag -t 1 to limit statistics to only startup and totals (or -t 0 for no statistics).

Filtering
Filtering smoothes the output image by averaging the color values
of neighboring pixels to the pixel being rendered. Oversampling
is performed by adding extra rays through random jittering of the
direction of the ray within the pixel being traced. By averaging the
result of all of the rays that are shot through a single pixel, aliasing
problems can be greatly reduced.

The filtering process adds little overhead to the rendering process,
however, the resolution of the image is degraded by the averaging
process. It simply averages the colors found at the four corners of
a pixel.

Adaptive Oversampling
Adaptive antialiasing starts by sending a ray through the
four corners of a pixel. If there is a sufficient contrast
between the corners then Polyray will fire five more rays
within the pixel. This results in four subpixels. Each
level of adaptive antialiasing repeats this procedure. If
adaptive1 is used in polyray.ini, or -a 2 from the
command line, then the antialiasing stops after a single
subdivision. If adaptive2 is used then each subpixel is
checked and if the corners are sufficiently different then
it will be divided again.

Rendering Options
Raytracing

Antialiasing

Focal Blur

Bounding Slabs

Shading Quality Flags

Scan Conversion

Wireframe

Depth Files

Raw Triangles

File Formats
Output Files

Currently the output file formats are 8, 16, 24, and 32 bit uncompressed and RLE compressed Targa .
If no output file is defined with the -o command line option, the file "out.tga" will be used. The
command line option -u specifies that no compression should be used on the output file.

The default output format is an RLE compressed 16-bit color format. This format holds 5 bits for
each of red, green, and blue. The reason for choosing this format is that very few can afford 24-bit
color boards and this format meets the limits of the typical 8 and 15 bit color boards. If you have the
hardware to display more than 32K colors then set the command line switches (i.e. -p 24 or -p 32) or
set the defaults in the initialization file polyray.ini (i.e. pixelsize 24 or pixelsize 32) to generate 24 or
32 bit Targa files.

Algorithms

Processing Polynomial Expressions

Processing of Arbitrary Functional

Three Dimensional Noise Generation

Marching Cubes

Processing Polynomial Expressions
The program in its current form allows the definition of polynomial surfaces of degree less than 33
(Due to numerical problems, don't bother with polynomials of degree more than around 10, and if
possible keep them less than 6.)

The way that polynomial expressions are processed and manipulated follows the following steps:

1. Parse the expression as taken from the input file. The YACC parser that is used to
process the input file creates a parse tree of the expression as it is read. The format for
allowed expressions is described in the topic Allowed Formula Syntax.

2. Expand the expression into a sum of simple subexpressions. After the parse tree has
been built, the expression is expanded so that the expression is in expanded form. (i.e.
(x+1)^2 is rewritten as x^2 + 2*x + 1.) The rules for doing this are explained in the topic
Rules for Processing Formulas.

3. Determine what order polynomial is represented by the expression. Every term in the
expanded expression is examined to see what the largest order of x, y, and z is used.
This determines the order N of the polynomial. From this value, the number of possible
terms of that order is computed.

4. Create an array of coefficients for the general three variable polynomial equation of order
N. There are a total of (N+1)*(N+2)*(N+3)/6 terms in the general equation. The values
of each of the coefficients in the expanded expression are then substituted into the array
of coefficients.

NOTE:    The storage of expressions is not particularly efficient for high orders of N.

Example Equation Representation
As an example of how the parse tree is expanded, given the input:

(x+y)*(1-x-z) + (x-z)^2.

The expanded representation is:
-1*x*y + -3*x*z + x + -1*y*z + y + z^2

This is a polynomial of order 2, and the array of coefficients is:
0 0 1 -1 -3 -1 1 1 0 0

Allowed Formula Syntax
The keyword here is "simple" algebraic expressions. The only allowed variables are "x", "y", and "z"
(and only lower case). Constants are floating point numbers. The operations allowed between
constants and the three variable symbols are: addition, subtraction, multiplication, unary minus, and
exponentiation by an positive integer power. Examples of expressions that can be processed are:

x^2+y-42
(1+x+y+z)^2 * 2*(x-y)*(z-x*(133-z^2))
27*x-y*42*y^2
(x^2+y^2+z^2+3)^2 - (x*y-x^2)*z^2

Examples of expressions that cannot be processed are:
x/y
x^0.5+y
2(x-y)

x^-2

Rules for Processing Formulas
There are only a few rules needed to simplify a polynomial expression to the point that it can be easily
turned into an array of coefficients. They appear below, with the letters A, B, C, and D standing for an
arbitrary sub-expression. The rules used to simplify an expression are:

Addition:
No simplification needed for the term: A + B

Subtraction:
A-B A + (-B)

Unary minus:
-(A*B) (-A * B)

-(A+B) (-A + -B)

Multiplication:
A*(B+C) A*B + A*C

(A+B)*C A*C + B*C

(A+B)*(C+D) A*C + A*D + B*C + B*D

Exponentiation:
(A*B)^n A^n * B^n

(A+B)^n C(n,0) * A^n + C(n,1) * A^(n-1) * B + ... C(n,n-1) * A * B^(n-1) +
C(n,n) * B^n { C(n, r) is the binomial coefficient }

Each of the subexpressions is further simplified until every term in the expression has the form:
const * x^i * y^j * z^k.

Topics

Example Equation Representation

Allowed Formula Syntax

Rules for Processing Formulas

Processing of Arbitrary Functional Surfaces
The basic algorithm for determining a point of intersection using interval math is quite simple:

1. Given a range of allowed values for the ray parameter T, a range of function values is
calculated.

2. If the range does not include 0 then there is no intersection.

3. If the range includes 0, then:

a. The range of values of the derivative of the function is calculated for the allowed
values of the ray parameter T.

b. If the range of values of the derivative includes 0, then the interval for T is
bisected and we process each subinterval starting with step 1.

c. If the range of values of the derivative does not include 0, then we know that
there is exactly one solution of the function in the current interval. A standard
root solver using the regula-falsi method is called to find the root.

There is of course much more to this...

Spherical Coordinates
To ray-trace functions that are defined in terms of spherical coordinates use the substitutions:

r = sqrt(x^2 + y^2 + z^2),
theta = atan(y/x),
phi = atan(sqrt(x^2 + y^2)/z)

Sample files:    sectorl.pi, zonal.pi

Three Dimensional Noise Generation
The way Polyray generates noise values from vector inputs follows these steps:

1. The integer part of the x, y, and z values of the vector are determined.

2. The eight integer points surrounding the input vector are determined.

3. A hashing function (described below) is applied to the integer points surrounding the input
vector, resulting in eight random numbers.

4. A final number is determine by weighting the values associated with the surrounding
points with the distance from the input vector to those points.

The result of this is that each point on an integer lattice has a random value, but each fractional value
inside a unit cube in the lattice is related to its surrounding points.

The hashing function I use takes the bottom 10 bits of the integer parts of the input vector, squishes
them into a single number, then crunches this value through a series of adds, multiplies, and mods to
get a single result. The algorithm is:

K = ((x & 0x03ff) << 20) |
 ((y & 0x03ff) << 10) |
 (z & 0x03ff);
Kt = 0;
for (i=0;i<mult_table_size;i++)
 Kt = ((Kt + K) * mult_table[i]) % HASH_SIZE;
result = (Flt)Kt / (Flt)(HASH_SIZE - 1);

The number and value of the entries in "mult_table" were chosen at random, as was the value
HASH_SIZE. I haven't bothered to determine if the results from this hashing function really are
spread evenly, however the visual results from using it are quite good.

Marching Cubes
The marching cubes algorithm puts a lattice over the three dimensional space that an object sits in.
By stepping through each subcube in the lattice and looking for places where the surface passes
through a subcube, a good guess at a polygonal cover for the surface can be generated. This
algorithm is used for scan converting blobs, polynomial functions, and implicit functions.

As each cube is processed, every vertex of the cube is tested to see if it is inside the object "hot", or
outside the object "cold". There are a total of 2^8 = 256 possible combinations of hot and cold
vertices.

The processing of each subcube in the lattice takes these steps:

 Each of the 8 vertices of the cube corresponds to a bit in an unsigned char. If the vertex
is hot then the bit is set to 1, if the vertex is cold the bit is set to 0.

 Using a little combinatorics and group theory, it is possible to classify, under the group of
solid rotations of the cube, each of the 256 possibilities to one of 23 unique base cases. (You can
actually drop down to 14, but it would have made parts of the algorithm more complicated.)

 Each of the base cases has an entry in a table of triangles that separate the hot vertices
from the cold vertices for that case.

 By using the inverse of the rotations that took the cube into the base case, the triangles
are rotated to separate the hot and cold vertices of the original cube.

 The amount of hot and amount of cold that are separated by each triangle is examined in
order to see how much to push the triangle up or down. This is a linear interpolation that helps to keep
the triangles close to the actual surface.

 Now that the triangles are known and in approximately the right place, the normal scan
conversion routine is called for each triangle.

The biggest drawback of this algorithm is that the number of evaluations goes up with the cube of the
resolution of the lattice. For example, if u_steps is 20 and v_steps is 20 (the default), then 20x20x20
= 8000 individual subcubes are visited. If you were to increase the resolution by a factor of 5, there
would be 100x100x100 = 1,000,000 subcubes visited.

Another problem is one of aliasing. If the surface is very complex and/or contains many small
features, and the number of steps along the axes is insufficient to properly determine inside/outside,
then large portions of the surface can disappear. The solution is to increase the step sizes, or to
raytrace, either option will increase processing time.

NOTE:    When I built the table of triangles, I made the assumption that if there are two ways to 
split hot from cold, that hot would always connect to hot.    One example of this choice is 
when the vertices: (0, 0, 0), (1, 0, 0), (0, 1, 1), and (1, 1, 1) are all hot and the rest are cold.

Sample Files
A number of sample files are referenced in this document. These files are contained in a separate
archive, and demonstrate various features of Polyray.

Simple demo files:
boxes.pi, cone.pi, cossph.pi, cwheel.pi, cylinder.pi, disc.pi, gsphere.pi, sphere.pi, spot0.pi

Sample color/texture definitions:
colors.inc, textures.inc

Polynomial surfaces:
bicorn.pi, bifolia.pi, cassini.pi, csaddle.pi, devil.pi, folium.pi, helix.pi, hyptorus.pi, kampyle.pi,
lemnisca.pi, loop.pi, monkey.pi, parabol.pi, partorus.pi, piriform.pi, qparab.pi, qsaddle.pi, quarcyl.pi,
quarpara.pi, steiner.pi, strophid.pi, tcubic.pi, tear5.pi, torus.pi, trough.pi, twincone.pi, twinglob.pi,
witch.pi

Implicit function surfaces:
sectorl.pi, sombrero.pi, sinsurf.pi, superq.pi, zonal.pi

Bezier patches:
bezier0.pi, teapot.pi, teapot.inc

Height fields:
hfnoise.pi, sombfn.pi, sinfn.pi, wake.pi

Image mapping:
map1.pi

Texturing, CSG, etc.:
lens.pi, lookpond.pi, marble.pi, polytope.pi, spot1.pi, wood.pi, xander.pi

Data file generators:
balls.c, coil.c, gears.c, hilbert.c, mountain.c, sphcoil.c, tetra.c

Animation files:
plane.pi, squish.pi, whirl.pi

Bibliography
"Introduction to Ray Tracing"
Edited by Andrew Glassner
Academic Press, 1989

"Illumination and Color in Computer Generated Imagery"
Roy Hall
Springer Verlag, 1989

"Numerical Recipes in C"
Press, et al.
Cambridge University Press, 1988

"CRC Handbook of Mathematical Curves and Surfaces"
David H. von Seggern
CRC Press, 1990

"Robust Ray Intersection with Interval Arithmetic"
D.P. Mitchell,
from:

"Proceedings Graphics Interface '90"
Canadian Information Processing Society

Detailed Description of the Polyray Input Format
An input file describes the basic components of an image:

 A viewpoint that characterizes where the eye is, where it is looking and what its
orientation is.

 Objects, their shape, placement, and orientation.

 Light sources, their placement and color.

 Textures for coloring and patterning surfaces.

Beyond the fundamentals, there are many components that exist either as a convenience such as
definable expressions, or textures. This section of the document describes in detail the syntax of all
of the components of an input file.

Input Format Topics
Expressions

Definition of the Viewpoint

Objects and Surfaces

Color and Lighting

Comments

Animation Support

Conditional Processing

Expressions
There are six basic types of expressions that are used in Polyray:

1. float: Floating point expression (i.e. 0.5, 2 * sin(1.33)). These are used at any point a
floating point value is needed, such as the radius of a sphere or the amount of contribution of
a part of the lighting model.

2. vector:  Vector valued expression (i.e. <0, 1, 0>, red, 12 * <2, sin(x), 17> + P). Used for
color expressions, describing positions, describing orientations, etc.

3. arrays:  Lists of expressions (i.e. [0, 1, 17, 42], [<0,1,0>, <2*sin(theta), 42, -4>, 2*<3, 7, 2>]

4. cexper:  Conditional expression (i.e. x < 42).

5. string: Strings used for file names or systems calls

6. images: A Targa, GIF, or JPEG image.

The following sections describe the syntax for each of these types of expressions, as well as how to
define variables in terms of expressions. See also the description of color maps, image maps (from
which you can retrieve color or vector values), indexed maps, and height maps.

Numeric Expressions
In most places where a number can be used (i.e. scale values, angles, RGB components, etc.) a
simple floating point expression (float) may be used. These expressions can contain any of the
following terms:

-0.1, 5e-3, ab, ... A floating point number or defined value

'(' float ')' Parenthesised expression

float ^ float Same as pow(x, y)

float * float Multiplication

float / float Division

float + float Addition

float - float Subtraction

-float Unary minus

acos(float) Arccosine, (radians for all trig functions)

asin(float) Arcsin

atan(float) Arctangent

ceil(float) Ceiling function

cos(float) Cosine

cosh(float) Hyperbolic cosine

degrees(float) Converts radians to degrees

exp(float) e^x, standard exponential function

fabs(float) Absolute value

floor(float) Floor function

fmod(float, float) Modulus function for floating point values

heightmap(imag
e, vector)

Height of an pixel in an image

ln(float) Natural logarithm

indexed(image, 
vector)

Index of an pixel in an image

legendre(l, m, n) Legendre function

log(float) Logarithm base 10

min(float,float) Minimum of the two arguments

max(float,float) Maximum of the two arguments

noise(vector)
noise(vector, 
float)

Solid texturing (noise) function. If the second
argument is given, it is used as the number of
octaves (repetitions) of the 3D noise function.

noise(vector,vect
or)

Second arg provides more flexible operation using:
<pos scale, noise scale, octaves>

pow(float, float) Exponentiation (x^y)

radians(float) Converts degrees to radians

sawtooth(float) Sawtooth function (range 0 - 1)

sin(float) Sine

sinh(float) Hyperbolic sine

sqrt(float) Square root

tan(float) Tangent

tanh(float) Hyperbolic tangent

visible(vector, 
vector)

Returns 1 if second point visible from first.

vector[i] Extract component i from a vector (0<=i<=3).

vector . vector Dot product of two vectors

|float| Absolute value (same as fabs)

|vector| Length of a vector

Vector Expressions

In most places where a vector can be used (i.e. color values, rotation angles, locations, etc.), a vector
expression is allowed. The expressions can contain any of the following terms:

vector + vector Addition

vector - vector Subtraction

vector * vector Cross product

vector * float Scaling of a vector by a scalar

float * vector Scaling of a vector by a scalar

vector / float Inverse scaling of a vector by a scalar

brownian(vector) Random displacement of up to 0.1

brownian(vector, vector) Makes a random displacement of the first
point by an amount proportional to the
components of the second point

color_wheel(x, y, z) RGB color wheel using x and z (y ignored),
the color returned is based on <x, z> using
the diagram below:

 Z-Axis
 ^
 |
 |
 Green Yellow
 \ /
 \ /
 Cyan --- * --- Red -----> X-
Axis
 / \
 / \
 Blue Magenta
Intermediate colors are generated by
interpolation.

dnoise(vector)
dnoise(vector,float)

Returns a vector (gradient) based on the
location given in the first argument. If the
second argument is given, it is used as the
number of octaves (repetitions) of the 3D
noise function.

dnoise(vector,vector) Second arg provides more flexible
operation using: <pos scale, noise scale,
octaves>.

planar_imagemap(image, vector [, rflag])
cylindrical_imagemap(image, vector [, rflag])
spherical_imagemap(image, vector [, rflag])
environment_map(vector, environment)

Image map lookup functions. If the third
argument is given, then the image will be
tiled, otherwise black is used outside the
bounds of the image. Note: for planar
image maps only the x and z coordinates of
the second argument are used.

rotate(vector, vector) Rotate the point specified in the first
argument by the angles specified in the
second argument. (angles in degrees)

rotate(vector, vector, float) Rotate the point specified in the first

argument around the axis specified in the
second argument, by the angle specified in
the third argument. (angle in degrees)

reflect(vector, vector) Reflect the first vector about the second
vector (particularly useful in environment
maps)

trace(vector, vector) Color resulting from tracing a ray from the
the point given as the first argument in the
direction given by the second argument.

Arrays
Arrays are a way to represent data in a convenient list form. A good use for arrays is to hold a
number of locations for polygon vertices or as locations for objects in successive frames of an
animation.

As an example, a way to define a tetrahedron (4 sided solid) is to define its vertices, and which
vertices make up its faces. By using this information in an object declaration, we can make a
tetrahedron out of polygons very easily.

define tetrahedron_faces
 [<0, 1, 2>, <0, 2, 3>, <0, 3, 1>, <1, 3, 2>]

define tetrahedron_vertices
 [<0, 0, sqrt(3)>, <0, (2*sqrt(2)*sqrt(3))/3, -sqrt(3)/3>,
 <-sqrt(2), -(sqrt(2)*sqrt(3))/3, -sqrt(3)/3>,
 <sqrt(2), -(sqrt(2)*sqrt(3))/3, -sqrt(3)/3>]

define tcf tetrahedron_faces
define tcv tetrahedron_vertices
define tetrahedron
object {
 object { polygon 3, tcv[tcf[0][0]],
 tcv[tcf[0][1]], tcv[tcf[][2]] } +
 object { polygon 3, tcv[tcf[1][0]],
 tcv[tcf[1][1]], tcv[tcf[1][2]] } +
 object { polygon 3, tcv[tcf[2][0]],
 tcv[tcf[2][1]], tcv[tcf[2][2]] } +
 object { polygon 3, tcv[tcf[3][0]],
 tcv[tcf[3][1]], tcv[tcf[3][2]] }
 }

What happened in the object declaration is that each polygon grabbed a series of vertex indices from
the array "tetrahedron_faces", then used that index to grab the actual location in space of that vertex.

Another example is to use an array to store a series of view directions so that we can use animation
to generate a series of very distinct renders of the same scene (the following example is how the
views for an environment map are generated):

define location <0, 0, 0>
define at_vecs [<1, 0, 0>, <-1, 0, 0>, < 0, 1, 0>, < 0,-1, 0>,
 < 0, 0,-1>, < 0, 0, 1>]
define up_vecs [< 0, 1, 0>, < 0, 1, 0>, < 0, 0, 1>,
 < 0, 0,-1>, < 0, 1, 0>, < 0, 1, 0>]

// Generate six frames

start_frame 0
end_frame 5

// Each frame generates the view in a specific direction. The
// vectors stored in the arrays "at_vecs", and "up_vecs" turn
// the camera in such a way as to generate image maps correct
// for using in an environment map.
viewpoint {
 from location
 at location + at_vecs[frame]
 up up_vecs[frame]
 ...
 }
... Rest of the data file ...

Sample files: plyhdrn.pi, environ.pi

Conditional Expressions
Conditional expressions are used in one of two places: conditional processing of declarations or
conditional value functions.

cexper has one of the following forms:

!cexper
cexper && cexper
cexper || cexper
float < float
float <= float
float > float
float >= float
float == float

A use of conditional expressions is to define a texture based on other expressions, the format of this
expression is:

(cexper ? true_value : false_value)

Where true_value/false_value can be either floating point or vector values. This type of expression is
taken directly from the equivalent in the C language. An example of how this is used (from the file
"spot1.pi") is:

special surface {
 color white
 ambient (visible(W, throw_offset) == 0 ? 0
 : (P[0] < 1 ? 1
 : (P[0] > throw_length ? 0
 : (throw_length - P[0]) / throw_length)))
 transmission (visible(W, throw_offset) == 1
 ? (P[0] < 1 ? 0
 : (P[0] > throw_length ? 1
 : P[0] / throw_length))
 : 1), 1
 }

In this case conditional statements are used to determine the surface characteristics of a one defining
the boundary of a spotlight. The amount of ambient light is modified with distance from the apex of
the cone, the visibility of the cone is modified based on both distance and on a determination if the

cone is behind an object with respect to the source of the light.

Run-Time Expressions
There are a few expressions that only have meaning during the rendering process:

I The direction of the ray that struck the object

P Point of intersection in object coordinates.

N The normal to the point of intersection in "world" coordinates.

W The point of intersection in "world" coordinates.

U The u/v/w coordinate of the intersection point.

x,y,z Components of the point in object coordinates.

u,v,w Components of the uv-coordinate of the point.

These expressions describe the interaction of a ray and an object. To use them effectively, you need
to understand the distinction between "world" coordinates, "object" coordinates, and "u/v"
coordinates. Object coordinates describe a point or a direction with respect to an object as it was
originally defined. World coordinates describe a point with respect to an object after it has been
rotated/scaled/translated. u/v coordinates describe the point in a way natural to a particular object
type (e.g., latitude and longitude for a sphere). Typically texturing is done in either object coordinates
or u/v coordinates so that as the object is moved around the texture will move with it. On the other
hand shading is done in world coordinates.

The variables u, v, and w are specific to each surface type and in general are the natural mapping for
the surface (e.g., latitude and longitude on a sphere) In general u varies from 0 to 1 as you go
around an object and v varies from 0 to one as you go from the bottom to the top of an object. These
variables can be used in a couple of ways, to tell Polyray to only render portions of a surface within
certain uv bounds, or they can be used as arguments to expressions in textures or displacement
functions.

Not all primitives set meaningful values for u and v, those that do are:

bezier, cone, cylinder, disc, height fields, NURB, parabola, parametric,
sphere, torus, patch

Other surface types will simply have u=x, v=y, w=z. An intersection with a gridded object will use the
u/v coordinates of the object within the grid.

See the file uvtst.pi in the data archives for an example of using uv bounds on objects. The file
spikes.pi demonstrates using uv as variables in a displacement surface. The file bezier1.pi
demonstrates using uv as variables to stretch an image over the surface of a bezier patch.

The meanings of some of these variables are slightly different when creating particle systems (see
2.3.5), or when coloring the background of an image (see 2.4.2)

NOTE:    Capitalization of these variables is important.

Named Expressions
A major convenience for creating input files is the ability to create named definitions of surface
models, object definitions, vectors, etc. The way a value is defined takes one of the following forms:

define token expression float, vector, array, cexper
define token "str..." string expression

define token object { ... }
define token surface { ... }
define token texture { ... }
define token transform { ... } Each entry may be one of

scale/translate/rotate/shear
define token particle { ... }

Objects, surfaces, and textures can either be instantiated as-is by using the token name alone, or it
can be instantiated and modified:

token,
or

token { ... modifiers ... },

Polyray keeps track of what type of entity the token represents and will parse the expressions
accordingly.

NOTE:    It is not possible to have two types of entities referred to by the same name.    If a 
name is reused, then a warning will be printed, and all references to that name will use the 
new definition from that point on.

Static Variables
Static variables are a way to retain variable values from frame to frame of an animation. Instead of
the normal declaration of a variable:

define xyz 32 * frame

you would do something like this:
if (frame == start_frame)
 static define xyz 42
else
 static define xyz (xyz + 0.1)

The big differences between a "static define" and a "define" are that the static will be retained from
frame to frame, and the static actually replaces any previous definitions rather than simply
overloading them.

The static variables have an additional use beyond simple arithmetic on variables. By defining
something that takes a lot of processing at parse time (like height fields and image maps), you can
make them static in the first frame and simply instantiate them every frame after that.

One example of this would be to spin a complex height field, if you have to create it every frame,
there is a many second long wait while Polyray generates the field. The following declarations would
be a better way:

if (frame == start_frame)
 static define sinsf
 object {
 smooth_height_fn 128, 128, -2, 2, -2, 2, 0.25 *
 sin(18.85 * x * z + theta_offset)
 shiny_red
 }
 ...
 sinsf

 ...

Several examples of how static variables can be used are found in the animation directory in the data
file archive. Two that make extensive use of static variables are movsph.pi, which bounces several
spherical blob components around inside a box, and cannon.pi which points a cannon in several
directions, firing balls once it is pointed.

Warning:    A texture inside a static object should ONLY be static itself.    The reason is that 
between frames, every non-static thing is deallocated.    If you have things inside a static 
object that point to a deallocated pointer, you will most certainly crash the program.    Sorry, 
but detecting these things would be too hard and reallocating all the memory would take up 
too much space.

Lazy Evaluation
Normally, Polyray tries to reduce the amount of time and space necessary for evaluating and storing
variables and expressions. For example, if you had the following definition of x:

define x 2 * 3

Polyray would store 6 rather than the entire expression. This can cause problems in certain
circumstances if Polyray decides to reduce the expression too soon. The problem is most notable in
particle systems since the expression that is used in it's declaration is used for the life of the particle
system. An example of the problem would be a declaration like:

define t (frame - start_frame) / (end_frame - start_frame)

When Polyray encounters this it will store a value for t that is between 0 (for the first frame) and 1 (for
the last frame). This is great, up until you declare a particle system with something like:

if (frame == start_frame)
define partx
particle {

death (t > 0.5 ? 1 : 0)
}

Clearly the intent here is that the particles created by this system will die halfway through the
animation (t > 0.5). This won't happen, since Polyray will evaluate the value of t at the time that partx
is declared, and store the expression (0 > 0.5 ? 1 : 0), which then reduces to 0. This means the
particle will never die.

To avoid this difficulty, the keyword noeval can be added to a definition to force Polyray to postpone
evaluation. The declaration of t would now be:

define noeval t (frame - start_frame) / (end_frame - start_frame)

When partx is declared, the entire expression is now used and the particles will die at the
appropriate time. Note that noeval is always the last keyword in a definition, and it works correctly
with static definitions as well as normal ones.

Sample file: part6.pi

Types of Expressions
Numeric Expressions

Vector Expressions

Arrays

Conditional Expressions

Run-Time Expressions

Named Expressions

Definition of the Viewpoint
The viewpoint and its associated components define the position and orientation the view will be
generated from.

The format of the declaration is:
viewpoint {
 from vector
 at vector
 up vector
 angle float
 hither float
 resolution float, float
 aspect float
 yon float
 max_trace_depth float
 aperture float
 max_samples float
 focal_distance float
 image_format float
 pixel_encoding float
 pixelsize float
 antialias float
 antialias_threshold float
 }

All of the entries in the viewpoint declaration are optional and have reasonable default values (see
below). Order of the entries defining the viewpoint is not important, unless you redefine some field.
(In which case the last is used.)

The parameters are:

aspect The ratio of width to height. (Default: 1.0.)

at A position to be at the center of the image, in XYZ world
coordinates. (Default: <0, 0, 0>)

angle The field of view (in degrees), from the center of the top
row to the center of the bottom row. (Default: 45 degrees)

antialias Level of antialiasing to use (Default: 0).

antialias_threshold Threshold to start antialiasing (Default: 0.01)

aperture If larger than 0, then extra rays are shot (controlled by

"max_samples" in the initialization file) to produce a
blurred image. Good values are between 0.1 and 0.5.
(Default: 0)

focal_distance Distance from the eye to the point that things are in
focus, this defaults to the distance between "from" and
"at".

from The eye location in XYZ. (Default: <0, 0, -1>)

hither Distance to front of view pyramid. Any intersection less
than this value will be ignored. (Defaults: 1.0e-3)

image_format If 0 then normal image, if 1 then depth image.

max_samples Number of rays/pixel when performing focal blur (Default:
4).

max_trace_depth This allows you to tailor the amount of recursion allowed
for scenes with reflection and/or transparency. (Default:
5)

resolution The number of pixels wide and high of the raster.
(Default: 256x256)

up A vector defining which direction is up, as an XYZ vector.
(Default: <0, 1, 0>)

yon Distance to back of view pyramid. Any intersection
beyond this distance will be ignored. (Defaults to 1.0e5)

The view vectors will be coerced so that they are perpendicular to the vector from the eye (from) to
the point of interest (at).

A typical declaration is:
viewpoint {
 from <0, 5, -5>
 at <0, 0, 0>
 up <0, 1, 0>
 angle 30
 resolution 320, 160
 aspect 2
 }

In this declaration the eye is five units behind the origin, five units above the x-z plane and is looking
at the origin. The up direction is aligned with the y-axis, the field of view is 30 degrees and the
output file will default to 320x160 pixels.

In this example it is assumed that pixels are square, and hence the aspect ratio is set to width/height.
If you were generating an image for a screen that has pixels half as wide as they are high then the
aspect ratio would be set to one.

Note that you can change from left handed coordinates (the default for Polyray) to right 
handed by using a negative aspect ratio (e.g., aspect -4/3).

Objects and Surfaces
In order to make pictures, the light has to hit something. Polyray supports several primitive objects,
and the following sections describe the syntax for describing the primitives, as well as how more
complex primitives can be built from simple ones.

The "object" declaration is how Polyray associates a surface with its lighting characteristics, and its
orientation. This declaration includes one of the primitive shapes (sphere, polygon, ...), and
optionally: a texture declaration (set to a matte white if none is defined), orientation declarations, or a
bounding box declaration.

The format the declaration is:
object {
 shape_declaration
 [texture_declaration]
 [transformation declarations]
 [subdivision declarations]
 [bounding box declaration]
 [u/v bounds declaration]
 }

There are three separate ways that an object can be rendered by Polyray: raytracing, scan
conversion, or wireframe. The steps taken by each of these methods are:

Raytracing
1. Find the object that seems closest to the eye along the current ray. The bounding slab

process is what determines what order objects will be tested against the ray.

2. Find all intersections of the ray with the object. (Up to the maximum number of
intersections.)

Scan Conversion
1. The object is broken up into a number of rectangles (the actual number depends on the

values of "u_steps" and "v_steps" in the object declarations).

2. The rectangle is clipped so that only the visible part will be rendered.

3. The clipped polygon is scan converted a line at a time. As the scan conversion takes
place, the object and world coordinates of the polygon are interpolated from vertices.

4. As each pixel is generated by scan conversion, its distance from the eye is checked
against a Z-Buffer.

5. If the distance is less than the value in the Z-Buffer, then any CSG and clipping
operations associated with the object are performed.

6. If the pixel passes the depth check and CSG checks, then the pixel is shaded using the
texture information associated with the object. The depth to the pixel is stored in the Z-
Buffer and the color associated with the pixel is stored in the S-Buffer.

Wireframe
1. The object is broken up into a number of rectangles (the actual number depends on the

values of "u_steps" and "v_steps" in the object declarations).

2. The rectangle is clipped so that only the visible part will be rendered.

3. The clipped rectangle is displayed on the screen. CSG is not taken into consideration in
a wireframe image.

Determining if a point is inside an object is performed by evaluating the function that describes the
object using the point of intersection. If the value is less than or equal to 0 then the point is inside.
Some primitives do not have an inside (triangular patches), others do not have a well defined inside
(cylinder).

The following sub-sections describe the format of the individual parts of an object declaration.

NOTE:      The shape declaration MUST be first in the declaration, as any operations that follow
have to have data to work on.

Object and Surface Topics
Object Modifiers

Primitives

Constructive Solid Geometry (CSG)

Gridded Objects

Object Modifiers
Object modifiers are statements within an object declaration that are used to move and/or change the
shape of the object.

The declarations are processed in the order they appear in the declaration, so if you want to resize
and object before moving it, you need to put the scale statement before the translation statement.
The exception to this are displacement and u/v bounds. These act on the underlying shape and are
applied prior to any other object modifiers, regardless of where they appear in the object declaration.

Bounding Box
In order to speed up the process of determining if a ray intersects an object and in order to define
good bounds for surfaces such as polynomials and implicit surfaces, a bounding box can be
specified. A short example of how it is used to define bounds of a polynomial:

define r0 3
define r1 1
define torus_expression (x^2 + y^2 + z^2 - (r0^2 + r1^2))^2 -
 4 * r0^2 * (r1^2 - z^2)
object {
 polynomial torus_expression
 shiny_red
 bounding_box <-(r0+r1), -(r0+r1), -r1>,
 <(r0+r1), (r0+r1), r1>
 }

The test for intersecting a ray against a box is much faster than performing the test for the polynomial
equation. In addition the box helps the scan conversion process determine where to look for the
surface of the torus.

Subdivision of Primitives
The amount of subdivision of a primitive that is performed before it is displayed as polygons is
tunable. These declarations are used for scan conversion of object, when creating displacement
surfaces, and to determine the quality of an implicit function. The declarations are:

u_steps n
v_steps m
w_steps l
uv_steps n, m
uv_steps n, m, l

Where U generally refers to the number of steps "around" the primitive (the number of steps around
the equator of a sphere for example). The parameter V refers to the number of steps along the

primitive (latitudes on a sphere). Cone and cylinder primitives only require 1 step along V, but for
smoothness may require many steps in U.

For blobs, polynomials, and implicit surfaces, the u_steps component defines how many subdivisions
along the x-axis, the v_steps component defines how many subdivisions along the y-axis, and the
w_steps component defines how many subdivision along the z-axis.

Shading Flags
It is possible to tune the shading that will be performed for each object. The values of each bit in the
flag has the same meaning as that given for global shading in the topic Shading Quality Flags:

1 Shadow_Check - Shadows will be generated

2 Reflect_Check - Reflectivity will be tested

4 Transmit_Check - Check for refraction

8 Two_Sides - If on, highlighting will be performed on both sides of
a surface.

16 Cast_Shadow - Determines if an object casts shadows.

32 Primary_Rays - If off, then primary rays (those from the eye) are
not checked against the object.

By default, all objects have the following flags set: Shadow_Check, Reflect_Check, Transmit_Check,
UV_Check, and Cast_Shadow. The two sides check is normally off.

The declaration has the form:
shading_flags xx

i.e. if the value 50 (32 + 16 + 2) is used for "xx" above, then this object can be reflective and will cast
shadows, however there will be no tests for transparency, there will be no shading of the back sides
of surfaces, and there will be no shadows on the surface.

NOTE:    The shading flag only affects the object in which the declaration is made.    This 
means that if you want the shading values affected for all parts of a CSG object, then you will 
need a declaration in every component.

Position and Orientation Modifiers
The position, orientation, and size of an object can be modified through one of four linear
transformations:

 Translation

 Rotation

 Scaling

 Shear.

Other modifications that can be made to the shape are displacement and u/v bounding.

Translation
Translation moves the position of an object by the number of units specified in the associated vector.
The format of the declaration is:

translate <xt, yt, zt>

For example the declaration:
translate <0, 20, -4>

will move the entire object up 20 units along the y axis and back 4 units along the (negative) z axis.

Rotation
Rotation revolves the position of an object about the x, y, and z axes (in that order). The amount of
rotation is specified in degrees for each of the axes. The direction of rotations follows a left-handed
convention: if the thumb of your left hand points along the positive direction of an axis, then the
direction your fingers curl is the positive direction of rotation. (A negative aspect ratio in the
viewpoint flips everything around to a right handed system.)

The format of the declaration is:
rotate <xr, yr, zr>

For example the declaration:
rotate <30, 0, 20>

will rotate the object by 30 degrees about the x axis, followed by 20 degrees about the z axis.
Remember: Left Handed Rotations.

Scaling
Scaling alters the size of an object by a given amount with respect to each of the coordinate axes.
The format of the declaration is:

scale <xs, ys, zs>

Note that using 0 for any of the components of a scale is a bad idea. It may result in a division by
zero in Polyray, causing a program crash. Use a small number like 1.0e-5 to flatten things. Usually
you will just want to use 1 for components that don't need scaling.

Shear
A less frequently used, but occasionally useful transformation is linear shear. Shear scales along
one axis by an amount that is proportional to the location on another axis. The format of the
declaration is:

shear yx, zx, xy, zy, xz, yz

Typically only one or two of the components will be non-zero, for example the declaration:
shear 0, 0, 1, 0, 0, 0

will shear an object more and more to the right as y gets larger and larger. The order of the letters in
the declaration is descriptive, shear ... ab, ... means shear along direction a by the amount "ab" times
the position b.

This declaration should probably be split into three: one that associates shear in x with the y and z
values, one that associates shear in y with x and z values, and one that associates shear in z with x
and y values.

You might want to look at the file "xander.pi" - this uses shear on boxes to make diagonally slanted
parts of letters.

Displace
The displacement operation causes a modification of the shape of an object as it is being rendered.
The amount and direction of the displacement are specified by the statement:

displace vector
or

displace float

If a vector expression is given, then Polyray will displace each vertex in the surface by the vector. If
a floating point expression is given, then Polyray will displace the surface along the direction of the
normal, by the amount given in the expression.

For effective results, the value of u_steps and v_steps should be set fairly high. Polyray subdivides
the surface, then performs the displacement. If there are too few subdivisions of the surface then the
result will be a very coarse looking object.

An example of an object that has a displacement is shown below. The displacement in the outer
object is applied to each of the two spheres within.

object {
 object {
 sphere <0,-1.5, 0>, 2
 u_steps 32
 v_steps 64
 shiny_red
 }
 + object {
 sphere <0, 1.5, 0>, 2
 u_steps 32
 v_steps 64
 shiny_blue
 translate <0, -1.5, 0>

 rotate <-20, 0, 30>
 translate <0, 2.25, 0>
 }
 displace 0.5 * sin(5*y)
 }

Sample Files:    disp2.pi, disp3.pi, legen.pi, spikes.pi

UV Bounds
By adjusting the value of the u/v bounds, it is possible to only render a selected portion of a surface.
The format of the declaration is:

uv_bounds low_u, high_u, low_v, high_v

For example, the following declaration will result in a wedge shaped portion of a sphere:
object {
 sphere <-2, 2, 0>, 1
 uv_bounds 0.3, 1.0, 0.0, 0.8
 }

The same effect could be achieved through the use of CSG with one or more clipping planes. For
most purposes (e.g., creating a hemisphere by setting u_low to 0.5) the uv_bounds will easier to
create and faster to render.

Sample File: uvtst.pi

Position and Orientation Topics
Translation

Rotation

Scaling

Shear

Displace

UV Bounds

Object Modifiers
Bounding Box

Subdivision of Primitives

Shading Flags

Position and Orientation Modifiers

Primitives
Primitives are the lowest level of shape description. Typically a scene will contain many primitives,
appearing either individually or as aggregates using either Constructive Solid Geometry (CSG)
operations or gridded objects.

The primitive shapes that can be used in Polyray include the following:

 Bezier Patch Lathe Surface

 Blob NURBS

 Box Parabola

 Cone Polygon

 Cylinder Polynomial Surface

 Disc Sphere

 Glyph Sweep Surface

 Height Field Torus

 Implicit Surface Triangular Patch

Descriptions of each of these primitive shapes, as well as references to data files that demonstrate
them are given in the following subsections. Following the description of the primitives are
descriptions of how CSG and grids can be built.

Bezier Patch
A Bezier patch is a form of bicubic patch that interpolates its control vertices. The patch is defined in
terms of a 4x4 array of control vertices, as well as several tuning values.

The format of the declaration is:
bezier subdivision_type, flatness_value,
 u_subdivisions, v_subdivision,
 [16 comma-separated vertices, i.e.
 <x0, y0, z0>, <x1, y1, z1>, ..., <x15, y15, z15>]

The subdivision_type and flatness_value are no longer used by Polyray. They are retained in the
declaration for backwards compatibility.

The number of levels of subdivision of the patch, in each direction, is controlled by either the
u_subdivisions and v_subdivisions given in the bezier shape declaration or by the value of uv_steps
(see the topic Subdivision of Primitives) if given later in the object declaration. The more
subdivisions allowed, the smoother the approximation to the patch, however storage and processing
time go up.

An example of a bezier patch is:
object {
bezier 2, 0.05, 3, 3,<0, 0, 2>, <1, 0, 0>, <2, 0, 0>, <3, 0,-2>,
 <0, 1, 0>, <1, 1, 0>, <2, 1, 0>, <3, 1, 0>,
 <0, 2, 0>, <1, 2, 0>, <2, 2, 0>, <3, 2, 0>,
 <0, 3, 2>, <1, 3, 0>, <2, 3, 0>, <3, 3,-2>
rotate <30, -70, 0>
shiny_red
}

Sample files: bezier0.pi, teapot.pi, teapot.inc

Blob
A blob describes a smooth potential field around one or more spherical, cylindrical, or planar
components.

The format of the declaration is:
blob threshold:
 blob_component1
 [, blob_component2]
 [, etc. for each component]

The threshold is the minimum potential value that will be considered when examining the interaction
of the various components of the blob. Each blob component one of two forms:

sphere <x, y, z>, strength, radius
cylinder <x0, y0, z0>, <x1, y1, z1>, strength, radius
plane <nx, ny, nz>, d, strength, dist

The strength component describes how strong the potential field is around the center of the
component, the "radius" component describes the maximum distance at which the component will
interact with other components. For a spherical blob component the vector <x,y,z> gives the center
of the potential field around the component. For a cylindrical blob component the vector <x0, y0, z0>
defines one end of the axis of a cylinder, the vector <x1, y1, z1> defines the other end of the axis of a
cylinder. A planar blob component is defined by the standard plane equation with <nx, ny, nz>

defining the normal and "d" defining the distance of the plane from the origin along the normal.

NOTE:    The ends of a cylindrical blob component are given hemispherical caps.

Note: toroidal blob components won't render correctly in raytracing.    The numerical precision
of a PC is insufficient.    It will work correctly in scan conversion or raw triangle output.

NOTE:    The colon and the commas in the declaration really are important.

An example of a blob is:
object {
 blob 0.5:
 cylinder <0, 0, 0>, <5, 0, 0>, 1, 0.7,
 cylinder <1, -3, 0>, <3, 2, 0>, 1, 1.4,
 sphere <3, -0.8, 0>, 1, 1,
 sphere <4, 0.5, 0>, 1, 1,
 sphere <1, 1, 0>, 1, 1,
 sphere <1, 1.5, 0>, 1, 1,
 sphere <1, 2.7, 0>, 1, 1

 texture {
 surface {
 color red
 ambient 0.2
 diffuse 0.8
 specular white, 1
 microfacet Phong 5
 }
 }
 }

NOTE:    Since a blob is essentially a collection of 4th order polynomials, it is possible to 
specify which quartic root solver to use.    See Polynomial Surface for a description of the 
"root_solver" statement.

Sample file: blob.pi

Box
A box is rectangular solid that has its edges aligned with the x, y, and z axes. it is defined in terms of
two diagonally opposite corners. The alignment can be changed by rotations after the shape
declaration.

The format of the declaration is:
box <x0, y0, z0>, <x1, y1, z1>

Usually the convention is that the first point is the front-lower- left point and the second is the back-
upper-right point. The following declaration is four boxes stacked on top of each other:

define pyramid
object {
 object { box <-1, 3, -1>, <1, 4, 1> }
 + object { box <-2, 2, -2>, <2, 3, 2> }
 + object { box <-3, 1, -3>, <3, 2, 3> }
 + object { box <-4, 0, -4>, <4, 1, 4> }

 matte_blue
 }

Sample file: boxes.pi

Cone
A cone is defined in terms of a base point, an apex point, and the radii at those two points. Note that
cones are not closed (you must use discs to cap them).

The format of the declaration is:
cone <x0, y0, z0>, r0, <x1, y1, z1>, r1

An example declaration of a cone is:
object {
 cone <0, 0, 0>, 4, <4, 0, 0>, 0
 shiny_red
 }

Sample file: cone.pi, cones.pi

Cylinder
A cylinder is defined in terms of a bottom point, a top point, and its radius. Note that cylinders are not
closed.

The format of the declaration is:
cylinder <x0, y0, z0>, <x1, y1, z1>, r

An example of a cylinder is:
object {
 cylinder <-3, -2, 0>, <0, 1, 3>, 0.5
 shiny_red
 }

Sample file: cylinder.pi

Disc
A disc is defined in terms of a center, a normal, and either a radius, or using an inner radius and an
outer radius. If only one radius is given, then the disc has the appearance of a (very) flat coin. If
two radii are given, then the disc takes the shape of an annulus (washer) where the disc extends from
the first radius to the second radius. Typical uses for discs are as caps for cones and cylinders, or as
ground planes (using a really big radius).

The format of the declaration is:
disc <cx, cy, cz>, <nx, ny, nz>, r

or
disc <cx, cy, cz>, <nx, ny, nz>, ir, or

The center vector <cx,cy,cz> defines where the center of the disc is located, the normal vector
<nx,ny,nz> defines the direction that is perpendicular to the disc. i.e. a disc having the center
<0,0,0> and the normal <0,1,0> would put the disc in the x-z plane with the y-axis coming straight out
of the center.

An example of a disc is:
object {
 disc <0, 2, 0>, <0, 1, 0>, 3
 rotate <-30, 20, 0>
 shiny_red
 }

NOTE:    A disc is infinitely thin.    If you look at it edge-on it will disappear.

Sample file: disc.pi

Glyphs (TrueType fonts)
The glyph primitive creates shapes similar to the sweep primitive. The big difference is that straight
line and curved line segments may appear in the same contour. Additionally, the glyph can be made
from several contours with exterior ones defining the outsides of the shape and interior ones defining
holes within the glyph.

Typically the glyph primitive will be used in conjunction with the utility TTFX (described below) to
translate TrueType font information into Polyray glyph information. The modeler POVCAD can
create Polyray glyphs, and also allows visual manipulation of the resulting object.

The following declaration creates a box with a square hole cut out of it.
object {
 glyph 2
 contour 4,
 <0, 0>, <4, 0>, <4, 4>, <0, 4>
 contour 4,
 <1, 1>, <1, 3>, <3, 3>, <3, 1>
 texture { shiny { color red reflection 0.2 } }
 translate <-2, 0, 0>
 }

The default placement of glyph coordinates is in the x-y plane and the glyph has a depth of one in z
(starting at z=0 and going to z=1). To change the depth, just use something like: scale <1, 1, 0.2>.

Each entry in a contour is a 2D point. If a non-zero z component is added then the point is assumed
to be an off-curve point and will create a curved segment within the contour. For example, the
following declaration makes a somewhat star shaped contour with sharp corners for the inner parts of
the star and rounded curves for the outer parts of the star:

object {
glyph 1 contour 14,
 <r0*cos(1*dt),r0*sin(1*dt)>,<r1*cos(2*dt),r1*sin(2*dt),1>,
 <r0*cos(3*dt),r0*sin(3*dt)>,<r1*cos(4*dt),r1*sin(4*dt),1>,
 <r0*cos(5*dt),r0*sin(5*dt)>,<r1*cos(6*dt),r1*sin(6*dt),1>,
 <r0*cos(7*dt),r0*sin(7*dt)>,<r1*cos(8*dt),r1*sin(8*dt),1>,
 <r0*cos(9*dt),r0*sin(9*dt)>,<r1*cos(10*dt),r1*sin(10*dt),1>,
<r0*cos(11*dt),r0*sin(11*dt)>,<r1*cos(12*dt),r1*sin(12*dt),1>,
 <r0*cos(13*dt),r0*sin(13*dt)>,<r1*cos(14*dt),r1*sin(14*dt),1>
}

The program TTFX.EXE has been included to help with the conversion of TrueType fonts from
their .TTF format (typically found in the /WINDOWS/SYSTEM directory) into the sort of declaration
that Polyray can understand. For example:

ttfx \windows\system\times.ttf Foo > temp.pi

or,
ttfx \windows\system\times.ttf Foo 0.2 > temp.pi

By default, the characters in the string being converted (the word Foo above) are packed right next to
each other. If a number follows the text string, then the characters are separated by that amount. A
spacing of 0.2 has worked pretty well for the fonts I've tried.

If you then add the following line to the top of temp.pi (leaving everything else like viewpoint to their
defaults)

light <0, 100, -100>

and render it with

polyray temp.pi -r 1

you will get a nice rendered image of the word Foo.

Note:    the combination of TTFX or POVCAD, Polyray raw triangle output, and RAW2POV is a 
way you can create TrueType characters for use in a number of renderers.

Sample files: timestst.pi, glyph1.pi, glyph2.pi, glyph3.pi, wingtst.pi

Implicit Surface
The format of the declaration is:

function f(x,y,z)

The function f(x,y,z) may be any algebraic expression composed of the variables: x, y, z, a numerical
value (e.g. 0.5), the operators: +, -, *, /, ^, and the functions: cos, cosh, exp, fabs, ln, log, sin, sinh,
tan, tanh. The code is not particularly fast, nor is it totally accurate, however the capability to ray-
trace such a wide class of functions by a SW program is (I believe) unique to Polyray.

The distance along the ray that solutions will be found in are determined by the following:

 If there is a bounding box, then the entry and exit points of the ray with the box will be
used as the search interval.

 If there is no bounding box then the interval from 0.01 to 100 will be used.

 Solutions must be more than 1.0e-4 units distant from each other.

NOTE:    The absolute value can be written with vertical bars, i.e. |x|^0.75.

The following object is taken from "sombrero.pi" and is a surface that looks very much like diminishing
ripples on the surface of water:

define a_const 1.0
define b_const 2.0
define c_const 3.0
define two_pi_a 2.0 * 3.14159265358 * a_const

// Define a diminishing cosine surface (sombrero)
object {
 function y - c_const * cos(two_pi_a * sqrt(x^2 + z^2)) *
 exp(-b_const * sqrt(x^2 + z^2))

 matte_red
 bounds object { box <-4, -4, -4>, <4, 4, 4> }
 }

It is quite important to have the bounding box declaration within the object where the function is
declared. If that isn't there, Polyray will be unable to determine where to look for intersections with
the surface. (The bounding box of an implicit function defaults to <-1, -1, -1>, <1, 1, 1>.)

Sample files: noisefn.pi, sinsurf.pi, sectorl.pi, sombrero.pi, superq.pi, zonal.pi

Lathe Surfaces
A lathe surface is a polygon that has been revolved about the y- axis. This surface allows you to
build objects that are symmetric about an axis, simply by defining 2D points.

The format of the declaration is:
lathe type, direction, total_vertices,
 <vert1.x,vert1.y,vert1.z>
 [, <vert2.x, vert2.y, vert2.z>]
 [, etc. for total_vertices vertices]

The value of "type" is either 1, or 2. If the value is 1, then the surface will simply revolve the line
segments. If the value is 2, then the surface will be represented by a spline that approximates the
line segments that were given. A lathe surface of type 2 is a very good way to smooth off corners in
a set of line segments.

The value of the vector "direction" is used to change the orientation of the lathe. For a lathe surface
that goes straight up and down the y-axis, use <0, 1, 0> for "direction. For a lathe surface that lies
on the x-axis, you would use <1, 0, 0> for the direction.

Sample file: lathe1.pi, lathe2.pi

Note that CSG will really only work correctly if you close the lathe - that is either make the end point of
the lathe the same as the start point, or make the x-value of the start and end points equal zero.
Lathes, unlike polygons are not automatically closed by Polyray.

NOTE:    Since a splined lathe surface (type = 2) is a 4th order polynomial, it is possible to 
specify which quartic root solver to use.    See the topic Polynomial Surface for a description 
of the "root_solver" statement.

NURBS
Polyray supports the general patch type, Non-Uniform Rational B-Splines (NURBS). All that is
described here is how they are declared and used in Polyray. For further background and details on
NURBS, refer to the literature.

They are declared with the following syntax:
nurb u_order, u_points, v_order, v_points,
 u_knots, v_knots, uv_mesh

or
nurb u_order, u_points, v_order, v_points, uv_mesh

Where each part of the declaration has the following format and definition,

Name Format Definition
u_order integer One more than the power of the spline in the u direction. (If

u_order = 4, then it will be a cubic patch.)
u_points integer The number of vertices in each row of the patch mesh
v_order integer One more than the power of the spline in v direction.
v_points integer The number of rows in the patch mesh
u_knots [...] Knot values in the u direction
v_knots [...] Knot values in the v direction
uv_mesh [...] An array of arrays of vertices.

Each vertex may have either three or four [...]] components. If the fourth component is set then the
spline will be rational. If the vertex has only three components then the homogenous (fourth)
component is assumed to be one. The homogenous component must be greater than 0.

For example, the following is a complete declaration of a NURB patch:
object {
 nurb 4, 6, 4, 5,
 [0, 0, 0, 0, 1.5, 1.5, 3, 3, 3, 3], // Non-uniform knots
 [0, 0, 0, 0, 1, 2, 2, 2, 2], // Uniform open knots
 [[<0,0,0>, <1,0, 3>, <2,0,-3>, <3,0, 3>, <4,0,0>],
 [<0,1,0>, <1,1, 0>, <2,1, 0>, <3,1, 0>, <4,1,0>],
 [<0,2,0>, <1,2, 0>, <2,2, 5,2>, <3,2, 0>, <4,2,0>],
 [<0,3,0>, <1,3, 0>, <2,3, 5,0.5>, <3,3, 0>, <4,3,0>],
 [<0,4,0>, <1,4, 0>, <2,4, 0>, <3,4, 0>, <4,4,0>],
 [<0,5,0>, <1,5,-3>, <2,5, 3>, <3,5,-3>, <4,5,0>]]
 translate <-2, -2.5, 0>
 rotate <-90, -30, 0>
 uv_steps 32, 32
 shiny_red
 }

The preceding patch was both non-uniform and rational. If you don't want to bother declaring the
knot vector you can simply omit it. This will result in a open uniform B-Spline patch. Most of the
time the non-uniform knot vectors are unnecessary and can be safely omitted. The preceding
declaration with uniform knot vectors, and non-rational vertices could then be declared as:

object {
 nurb 4, 6, 4, 5,
 [[< 0, 0, 0>, < 1, 0, 3>, < 2, 0,-3>, < 3, 0, 3>, < 4, 0, 0>],
 [< 0, 1, 0>, < 1, 1, 0>, < 2, 1, 0>, < 3, 1, 0>, < 4, 1, 0>],
 [< 0, 2, 0>, < 1, 2, 0>, < 2, 2, 5>, < 3, 2, 0>, < 4, 2, 0>],
 [< 0, 3, 0>, < 1, 3, 0>, < 2, 3, 5>, < 3, 3, 0>, < 4, 3, 0>],
 [< 0, 4, 0>, < 1, 4, 0>, < 2, 4, 0>, < 3, 4, 0>, < 4, 4, 0>],
 [< 0, 5, 0>, < 1, 5,-3>, < 2, 5, 3>, < 3, 5,-3>, < 4, 5, 0>]]
 translate <-2, -2.5, 0>
 rotate <-90, -30, 0>
 uv_steps 32, 32
 shiny_red
}

Note that internally NURBS are stored as triangles.    This can result in a high memory usage 
for a finely diced NURB (uv_steps large).

Sample files: nurb0.pi, nurb1.pi

Parabola
A parabola is defined in terms of a bottom point, a top point, and its radius at the top.

The format of the declaration is:
parabola <x0, y0, z0>, <x1, y1, z1>, r

The vector <x0,y0,z0> defines the "top" of the parabola - the part that comes to a point. The vector
<x1,y1,z1> defines the "bottom" of the parabola, the width of the parabola at this point is "r".

An example of a parabola declaration is:
object {
 parabola <0, 6, 0>, <0, 0, 0>, 3
 translate <16, 0, 16>
 steel_blue
 }

This is sort of like a salt shaker shape with a rounded top and the base on the x-z plane.

Parametric Surface
A parametric surface allows the creation of surfaces as a mesh of triangles. By defining the vertices
of the mesh in terms of functions of u and v, Polyray will automatically create the entire surface. The
smoothness of the surface is determined by the number of steps allowed for u and v.

The mesh defaults to 0 <= u <= 1, and 0 <= v <= 1. By explicitly defining the uv_bounds for the
surface it is possible to create only the desired parts of the surface.

The format of the declaration is:
parametric <fx(u,v), fy(u,v), fz(u,v)>

For example, the following declarations could be used to create a torus:
define r0 1.25
define r1 0.5

define torux (r0 + r1 * cos(v)) * cos(u)
define toruy (r0 + r1 * cos(v)) * sin(u)
define toruz r1 * sin(v)

object {
 parametric <torux,toruy,toruz>
 rotate <-20, 0, 0>
 shiny_red
 uv_bounds 0, 2*pi, 0, 2*pi
 uv_steps 16, 8
 }

Polygon
Although polygons are not very interesting mathematically, there are many sorts of objects that are
much easier to represent with polygons. Polyray assumes that all polygons are closed and
automatically adds a side from the last vertex to the first vertex.

The format of the declaration is:
polygon total_vertices,
 <vert1.x,vert1.y,vert1.z>
 [, <vert2.x, vert2.y, vert2.z>]

 [, etc. for total_vertices vertices]

As with the sphere, note the comma separating each vertex of the polygon.

I use polygons as a floor in a lot of images. They are a little slower than the corresponding plane, but
for scan conversion they are a lot easier to handle. An example of a checkered floor made from a
polygon is:

object
 {
 polygon 4, <-20, 0, -20>, <-20, 0, 20>,
 < 20, 0, 20>, < 20, 0, -20>
 texture {
 checker matte_white, matte_black
 translate <0, -0.1, 0>
 scale <2, 1, 2>
 }
 }

Polynomial Surface
The format of the declaration is:

polynomial f(x,y,z)

The function f(x,y,z) must be a simple polynomial, i.e., x^2+y^2+z^2-1.0 is the definition of a sphere of
radius 1 centered at (0,0,0). See the topic Processing Polynomial Expressions for a little more detail
on restrictions on the form of the polynomial.

For quartic equations, there are three available ways to solve for roots, by specifying which one is
desired, it is possible to tune for quality or speed. The method of Ferrari is the fastest, but also the
most numerically unstable. By default the method of Vieta is used. Sturm sequences (which are
the slowest) should be used where the highest quality is desired.

The declaration of which root solver to use takes one of the forms:
root_solver Ferrari
root_solver Vieta
root_solver Sturm

(Capitalization is important - these are proper nouns after all.)

NOTE:    Due to unavoidable numerical inaccuracies, not all polynomial surfaces will render 
correctly from all directions.

The following example, taken from "devil.pi" defines a quartic polynomial. The use of the CSG
clipping object is to trim uninteresting parts of the surface. The bounding box declaration helps the
scan conversion routines figure out where to look for the surface.

// Variant of a devil's curve in 3-space. This figure has a
// top and bottom part that are very similar to a hyperboloid
// of one sheet, however the central region is pinched in the
// middle leaving two teardrop shaped holes.
object {
 object {
 polynomial x^4 + 2*x^2*z^2 - 0.36*x^2 - y^4 +
 0.25*y^2 + z^4
 root_solver Ferrari

 }
 & object { box <-2, -2, -0.5>, <2, 2, 0.5> }
 bounding_box <-2, -2, -0.5>, <2, 2, 0.5>
 rotate <10, 20, 0>
 translate <0, 3, -10>
 shiny_red
 }

NOTE:    As the order of the polynomial goes up, the numerical accuracy
required to render the surface correctly also goes up. One problem that starts
to rear its ugly head starting at around 3rd to 4th order equations is a
problem with determining shadows correctly.    The result is black spots on the
surface.    You can avoid this problem to a certain extent by making the value
of "shadow_tolerance" larger.    For 4th and higher equations, you will want to
use a value of at least 0.05, rather than the default 0.001.

Sample file: torus.pi, many others

Sphere
Spheres are the simplest 3D object to render and a sphere primitive enjoys a speed advantage over
most other primitives.

The format of the declaration is:
sphere <center.x, center.y, center.z>, radius

Note the comma after the center vector, it really is necessary.

My basic benchmark file is a single sphere, illuminated by a single light. The definition of the sphere
is:

object {
 sphere <0, 0, 0>, 2
 shiny_red
 }

Sample file: sphere.pi

Sweep Surface
A sweep surface, also referred to as an extruded surface, is a polygon that has been swept along a
given direction. It can be used to make multi-sided beams, or to create ribbon-like objects.

The format of the declaration is:
sweep type, direction, total_vertices,
 <vert1.x,vert1.y,vert1.z>
 [, <vert2.x, vert2.y, vert2.z>]
 [, etc. for total_vertices vertices]

The value of "type" is either 1, or 2. If the value is 1, then the surface will be a set of connected
squares. If the value is 2, then the surface will be represented by a spline that approximates the line
segments that were given.

The value of the vector "direction" is used to change the orientation of the sweep. For a sweep
surface that is extruded straight up and down the y-axis, use <0, 1, 0> for "direction. The size of the
vector "direction" will also affect the amount of extrusion; i.e., if |direction| = 2, then the extrusion will
be two units in that direction.

An example of a sweep surface is:
// Sweep made from connected quadratic splines.
object {
 sweep 2, <0, 2, 0>, 16,
 <0, 0>, <0, 1>, <-1, 1>, <-1, -1>, <2, -1>, <2, 3>,
 <-4, 3>, <-4, -4>, <4, -4>, <4, -11>, <-2, -11>,
 <-2, -7>, <2, -7>, <2, -9>, <0, -9>, <0, -8>
 translate <0, 0, -4>
 scale <1, 0.5, 1>
 rotate <0,-45, 0>
 translate <10, 0, -18>
 shiny_yellow
 }

Sample file: sweep1.pi, sweep2.pi

NOTE:    CSG will really only work correctly if you close the sweep - that is make
the end point of the sweep the same as the start point.    Sweeps, unlike
polygons are not automatically closed by Polyray.

Torus
The torus primitive is a doughnut shaped surface that is defined by a center point, the distance from
the center point to the middle of the ring of the doughnut, the radius of the ring of the doughnut, and
the orientation of the surface.

The format of the declaration is:
torus r0, r1, <center.x, center.y, center.z>,
 <dir.x, dir.y, dir.z>

As an example, a torus that has major radius 1, minor radius 0.4, and is oriented so that the ring lies
in the x-z plane would be declared as:

object {
 torus 1, 0.4, <0, 0, 0>, <0, 1, 0>
 shiny_red
 }

NOTE:    Since a torus is a 4th order polynomial, it is possible to specify which quartic root 
solver to use.    See the topic Polynomial Surface for a description of the "root_solver" 
statement.

Sample file: torus.pi

Triangular Patch
A triangular patch is defined by a set of vertices and their normals. When calculating shading
information for a triangular patch, the normal information is used to interpolate the final normal from
the intersection point to produce a smooth shaded triangle.

The format of the declaration is:
patch <x0,y0,z0>, <nx0,ny0,nz0>, [UV u0, v0,]
 <x1,y1,z1>, <nx1,ny1,nz1>, [UV u1, v1,]
 <x2,y2,z2>, <nx2,ny2,nz2> [, UV u2, v2]

The vertices and normals are required for each of the three corners of the patch. The u/v
coordinates are optional. If they are omitted, then they will be set to the following values:

u0 = 0, v0 = 0
u1 = 1, v1 = 0
u2 = 0, v1 = 1

Smooth patch data is usually generated as the output of another program.

Primitives
Bezier Patch Lathe Surface

Blob NURBS

Box Parabola

Cone Polygon

Cylinder Polynomial Surface

Disc Sphere

Glyph Sweep Surface

Height Field Torus

Implicit Surface Triangular Patch

Height Field
There are two ways that height fields can be specified, either by using data stored in a Targa file, or
using an implicit function of the form y = f(x, z).

The default orientation of a height field is that the entire field lies in the square
 0 <= x <= 1, 0 <= z <= 1.
File based height fields are always in this orientation, implicit height fields can optionally be defined
over a different area of the x-z plane. The height value is used for y.

File Based Height Fields
Height fields data can be read from a Targa, GIF, or JPEG format file. A GIF image will be treated as
an 8 bit format image as described below. Any color information in the GIF file is ignored.

Note that if you use JPEG images, a grayscale JPEG will be treated as an 8 bitformat and a color
JPEG will be treated as a 24 bit format height field. Due to the lossy nature of JPEG, it is extremely
unlikely that a color JPEG will be useful as a height field. It is possible that reasonable results can
be obtained using grayscale JPEG images as height fields (no guarantees).

By using "smooth_" in front of the declaration, an extra step is performed that calculates normals to
the height field at every point within the field. The result of this is a greatly smoothed appearance, at
the expense of around three times as much memory being used.

The format of the declaration is:
height_field "filename"
smooth_height_field "filename"

The sample program "wake.c" generates a Targa file that simulates the wake behind a boat.

Sample files: wake.pi, spiral.pi, islands.pi

8 Bit Format
Each pixel in the file (Type 3 Targa, raw greyscale image) is represented by a single byte. The byte
is treated as a signed integer, giving a range of values from -127 to 128.

16 Bit Format
Each pixel in the file is represented by two bytes, low then high. The high component defines the
integer component of the height, the low component holds the fractional part scaled by 255. The
entire value is offset by 128 to compensate for the unsigned nature of the storage bytes. As an
example the values high = 140, low = 37 would be translated to the height:

(140 + 37 / 256) - 128 = 12.144

similarly if you are generating a Targa file to use in Polyray, given a height, add 128 to the height,
extract the integer component, then extract the scaled fractional component. The following code
fragment shows a way of generating the low and high bytes from a floating point number.

unsigned char low, high;
float height;
FILE *height_file;

...

height += 128.0;
high = (unsigned char)height;
height -= (float)high;
low = (unsigned char)(256.0 * height);
fputc(low, height_file);
fputc(high, height_file);

24 Bit Format
The red component defines the integer component of the height, the green component holds the
fractional part scaled by 255, the blue component is ignored. The entire value is offset by 128 to
compensate for the unsigned nature of the RGB values. As an example the values r = 140, g =
37, and b = 0 would be translated to the height:

(140 + 37 / 256) - 128 = 12.144

similarly if you are generating a Targa file to use in Polyray, given a height, add 128 to the height,
extract the integer component, then extract the scaled fractional component. The following code
fragment shows a way of generating the RGB components from a floating point number.

unsigned char r, g, b;
float height;
FILE *height_file;

...

height += 128.0;
r = (unsigned char)height;
height -= (float)r;
g = (unsigned char)(256.0 * height);
b = 0;
fputc(b, height_file);
fputc(g, height_file);
fputc(r, height_file);

32 Bit Format
The four bytes of the 32 bit Targa image are used to hold the four bytes of a floating point number.
The format of the floating point number is machine specific, and the order of the four bytes in the
image correspond exactly to the order of the four bytes of the floating number when it is in memory.

For example, the following code shows how to take a floating point number and store it to a file in the
format that Polyray will expect. You will also need to write the Targa header, etc.

unsigned char *byteptr;
float depth;
FILE *ofile;

calculations for depth ...

/* Store a floating point number as a 32 bit color- this is obviously a
machine specific result for the floating point number that is stored.
There is also an assumption here that a float type is exactly 4 bytes
and that the size of an unsigned char is exactly 1 byte. */
byteptr = (unsigned char *)&depth;
fputc(byteptr[0], ofile);
fputc(byteptr[1], ofile);
fputc(byteptr[2], ofile);
fputc(byteptr[3], ofile);

      ...

Implicit Height Fields
Another way to define height fields is by evaluating a mathematical function over a grid. Given a
function y = f(x, z), Polyray will evaluate the function over a specified area and generate a height field
based on the function. This method can be used to generate images of many sorts of functions that
are not easily represented by collections of simpler primitives.

The valid formats of the declaration are:
height_fn xsize, zsize, min_x, max_x, min_z, max_z, expression
height_fn xsize, zsize, expression

smooth_height_fn xsize, zsize, min_x, max_x, min_z, max_z, expression

smooth_height_fn xsize, zsize, expression

If the four values min_x, max_x, min_z, and max_z are not defined then the default square 0 <= x <=
1, 0 <= z <= 1 will be used.

For example:
// Define constants for the sombrero function
define a_const 1.0
define b_const 2.0
define c_const 3.0
define two_pi_a 2.0 * 3.14159265358 * a_const

// Define a diminishing cosine surface (sombrero)
object {
 height_fn 80, 80, -4, 4, -4, 4,
 c_const * cos(two_pi_a * sqrt(x^2 + z^2)) *
 exp(-b_const * sqrt(x^2 + z^2))
 shiny_red
 }

will build a height field 80x80, covering the area from -4 <= x <= 4, and -4 <= z <= 4.

Compare the run-time performance and visual quality of the sombrero function as defined in
"sombfn.pi" with the sombrero function as defined in "sombrero.pi". The former uses a height field
representation and renders quite fast. The latter uses a very general function representation and
gives smoother but very slow results.

Sample file: sombfn.pi, sinfn.pi

Height Field Topics
File Based Height Fields

8 Bit Format

16 Bit Format

24 Bit Format

Implicit Height Fields

Constructive Solid Geometry (CSG)
Objects can be defined in terms of the union, intersection, and inverse of other objects. The
operations and the symbols used are:

csgexper + csgexper Union

csgexper * csgexper Intersection

csgexper - csgexper Difference

csgexper & csgexper Clip the first object by the second

~csgexper Inverse

(csgexper) Parenthesised expression

Union simply collects two objects together. Union is a convenient way to group objects in such a way
as to be able to transform them as a group. Intersection keeps only those parts of each object that
are "inside" the other object. Difference keeps all parts of the two surfaces that are inside the first
object and outside the second. Clipping removes all parts of the first object that are outside the
second. The inverse operation inverts the "inside" to be the outside and vice-versa. (i.e. a - b is the
same as a * ~b).

Note that intersection and difference require a clear inside and outside. Not all primitives have well
defined sides. Those that do are:

Cylinders, Cones, Discs, Height Fields, Lathes, Parabola, Polygons, and Sweeps.

Using Cylinders, Cones, and Parabolas works correctly, but the open ends of these surfaces will also
be open in the resulting CSG. To close them off you can use a disc shape.

Using Discs and Polygons in a CSG is really the same as doing a CSG with the plane that they lie in.
If fact, a large disc is an excellent choice for clipping or intersecting an object, as the inside/outside
test is very fast.

Lathes, and Sweeps use Jordan's rule to determine if a point is inside. This means that given a test
point, if a line from that point to infinity crosses the surface an odd number of times, then the point is
inside. The net result is that if the lathe (or sweep) is not closed, then you may get odd results in a
CSG intersection (or difference).

CSG involving height fields only works within the bounds of the field.

As an example, the following file will generate a view of a sphere of radius 1 with a hole of radius 0.5
through the middle:

define cylinder_z object { cylinder <0,0,-1.1>, <0,0,1.1>, 0.5 }

define unit_sphere object { sphere <0, 0, 0>, 1 }

// Define a CSG shape by deleting a cylinder from a sphere
object {
 unit_sphere - cylinder_z
 shiny_red
 }

Sample files: csg1.pi, csg2.pi, csg3.pi, roman.pi, lens.pi, polytope.pi

Gridded Objects
A gridded object is a way to compactly represent a rectangular arrangement of objects by using an
image map. Each object is placed within a 1x1 cube that has its lower left corner at the location <i,
0, j> and its upper right corner at <i+1, 1, j+1>. The color index of each pixel in the image map is
used to determine which of a set of objects will be placed at the corresponding position in space.

The gridded object is much faster to render than the corresponding layout of objects. The major
drawback is that every object must be scaled and translated to completely fit into a 1x1x1 cube that
has corners at <0,0,0> and <1,1,1>.

The size of the entire grid is determined by the number of pixels in the image. A 16x32 image would
go from 0 to 16 along the x- axis and the last row would range from 0 to 16 at 31 units in z out from
the x-axis.

The format of the declaration is:
gridded "image.tga",
 object1
 object2
 object3
 ...

An example of how a gridded object is declared is:
define tiny_sphere object { sphere <0.5, 0.4, 0.5>, 0.4 }
define pointy_cone object { cone <0.5, 0.5, 0.5>, 0.4,
 <0.5, 1, 0.5>, 0 }
 object {
 gridded "grdimg0.tga",
 tiny_sphere { shiny_coral }
 tiny_sphere { shiny_red }
 pointy_cone { shiny_green }
 translate <-10, 0, -10>
 rotate <0, 210, 0>

In the image "grdimg0.tga", there are a total of 3 colors used, every pixel that uses color index 0 will
generate a shiny "coral" colored sphere, every pixel that uses index will generate a red sphere,
every pixel that uses index 2 will generate a green cone, and every other color index used in the
image will leave the corresponding space empty.

The normal image format for a gridded object is either grayscale or color mapped. To determine
which object will be used, the value of the pixel itself in the grayscale image and the color index is
used in the mapped image. If a 16 bit Targa is used, then the second byte of the color is used. If a
24 bit Targa is used, then the value of the red component is used. This limits the # of objects for all
images to 256.

A color JPEG is treated the same as a 24 bit Targa (unlikely to be useful, due to the lossy nature of
JPEG).

Sample files: grid.pi, river.pi

Particle Systems
There are two distinct pieces of information that are used by Polyray to do particles. The first is a
particle declaration, this is the particle generator. The second is the particle itself. It is important to
retain the distinction, you generally only want to have one particle generator, but you may want that

generator to produce many particles.

The form of the declaration for a particle generator is:

particle{
 object "name"
 position vector
 velocity vector
 acceleration vector
 birth float
 death float
 count float
 avoid float
}

The wrapper for the particle must be the name of an object appearing in a define statement. If there
isn't an object with that name, Polyray will write an error message and abort. Everything else is
optional, but if you don't set either the velocity or acceleration then the object will just sit at the origin.

The default values for each component are:

position - <0, 0, 0>
velocity - <0, 0, 0>
acceleration - <0, 0, 0>
birth - frame == start_frame
death - false (never dies)
count - 1
avoid - false (doesn't bounce)

As an example, the following declaration makes a starburst of 50 spheres. Note the conditional
before the particle declaration. You almost always want to do this, otherwise you will create a new
particle generator at every frame of the animation. Since the default birth condition is to generate
particles only on the first frame, the only side effect here would be to suck up more memory every
frame to retain the particle generator definition.

frame_time 0.05

define gravity -1

// Star burst
if (frame == start_frame)
particle {
position <0, 5, 0>
velocity brownian(<0, 0, 0>, <1, 1, 1>)
acceleration gravity
object "bsphere"
count 50
}

The value in the velocity declaration generates a random vector that ranges from <-1, -1, -1> to <1, 1,
1>. Each particle of the 50 is given a different initial velocity, which is what gives the bursting effect.

An additional declaration, frame_time xx, has been added specifically for tuning particle animations.
This declaration determines how much time passes for every frame. Each particle starts with an age
of 0, after each frame it's age is incremented by the value xx in the frame_time declaration.
Additionally the position and velocity of the particle is updated after every frame according to the

formula:

V = V + frame_time * A
P = P + frame_time * V

The status of a particle is set by making use of some of the standard Polyray variables. The names
and meanings are:

P Current location of the particle as a vector
x X location of the particle (or P[0])
y Y location of the particle (or P[1])
z Z location of the particle (or P[2])
I Current velocity of the particle as a vector
u Age of the particle (frame_time * elapsed frames since birth)

These values are used in two situations, when checking the death condition of a particle and when
calculating the acceleration of the particle.

If an avoid statement is given then before every frame the position of the particle is checked to see if
it hits any objects in the scene (non-particle objects). If so, then the particle will bounce off the
object.

Note:    See the topic Lazy Evaluation for information on lazy evaluation of expressions.    This 
is necessary for some particle systems to behave correctly.

Sample files: part1.pi, part2.pi, part3.pi, part6.pi

Bounding Slabs
For scenes with large numbers of small objects, there are optimization tricks that can take advantage
of the distribution of the objects. An easy one to implement, and one that often results in huge time
savings are bounding slabs. The basic idea of a bounding slab is to sort all objects along a particular
direction. Once this sorting step has been performed, then during rendering the ray can be quickly
checked against a slab (which can represent many objects rather than just one) to see if intersection
tests need to be made on the contents of the slab.

The most important caveats with Polyray's implementation of bounding slabs are:

 Scenes with only a few large objects will derive little speed benefits.

 If there is a lot of overlap of the positions of the objects in the scene, then there will be
little advantage to the slabs.

 If the direction of the slabs does not correspond to a direction that easily sorts objects,
then there will be little speed gained.

However, for data files that are generated by another program, the requirements for effective use of
bounding slabs are often met. For example, most of the data files generated by the SPD programs
will be rendered orders of magnitude faster with bounding slabs than without.

Slabs are turned on by default. To turn them off either use the command line flag, -O 0, or add the
line, optimizer none, to polyray.ini.

Color and Lighting
The color space used in Polyray is RGB, with values of each component specified as a value from 0 -
> 1. The way the color and shading of surfaces is specified is described in the following sections.

RGB colors are defined as either a three component vector, such as <0.6, 0.196078, 0.8>, or as one
of the X11R3 named colors (which for the value given is DarkOrchid). One of these days when I feel
like typing and not thinking (or if I find them on line), I'll put in the X11R4 colors.

The coloring of objects is determined by the interaction of lights, the shape of the surface it is striking,
and the characteristics of the surface itself.

Light Sources
Light sources are one of: simple positional light sources, spot lights, or textured lights. None of these
lights have any physical size. The lights do not appear in the scene, only the effects of the lights.

Positional Lights
A positional light is defined by its RGB color and its XYZ position.

The format of the declaration is:
light color, location

or
light location

The second declaration will use white as the color.

Spot Lights
The format of the declaration is:

spot_light color, location, pointed_at, Tightness, Angle, Falloff
or

spot_light location, pointed_at

The vector "location" defines the position of the spot light, the vector "pointed_at" defines the point at
which the spot light is directed. The optional components are:

Color The color of the spotlight

Tightness The power function used to determine the shape of the hot spot

Angle The angle (in degrees) of the full effect of the spot light

Falloff A larger angle at which the amount of light falls to nothing

A sample declaration is:
spot_light white, <10,10,0>, <3,0,0>, 3, 5, 20

Sample file: spot0.pi

Textured Lights
Textured lights are an extension of point lights that use a function (including image maps) to describe
the intensity & color of the light in each direction. The format of the declaration is:

textured_light {
 color float
 [scale/translate/rotate/shear]
 }

Any color expression is allowed for the textured light, and is evaluated at run time.

A rotating slide projector light from the data file ilight.pi is shown below:
define block_environ
environment("one.tga", "two.tga", "three.tga","four.tga",
 "five.tga", "six.tga")
textured_light {

 color environment_map(P, block_environ)
 rotate <frame*6, frame*3, 0>
 translate <0, 2, 0>
 }

Sample file: environ.pi, ilight.pi

Directional Lights
The directional light means just that, light coming from some direction.

An example would be: directional_light <2, 3, -4>, giving a white light coming from the right, above,
and behind the origin.

directional_light color, direction
directional_light direction

Depth Mapped Lights
Depth mapped lights are very similar to spotlights, in the sense that they point from one location and
at another information. The primary use for these is for doing shadowing in scan converted scenes.
The format of their declaration is:

depthmapped_light {
 [angle fexper]
 [aspect fexper]
 [at vexper]
 [color expression]
 [depth "depthfile.tga"]
 [from vexper]
 [hither fexper]
 [up vexper]
 }

You may notice that the format of the declaration is very similar to the viewpoint declaration. This is
intentional, as you will usually generate the depth information for "depthfile.tga" as the output of a run
of Polyray.

To support output of depth information, a new statements was added to the viewpoint declaration,
image_format.

A viewpoint declaration that will output a depth file would have the form:
viewpoint {
 from [location of depth mapped light]
 at [location the light is pointed at]
 ...
 image_format 1
 }

Where the final statement tells Polyray to output depth information instead of color information. Note
that if the value in the image_format statement is 0, then normal rendering will occur.

If a hither declaration is used, then the value given is used as a bias to help prevent self shadowing.
The default value for this bias is the value of shadow_tolerance in polyray.ini.

Sample File: room1.pi, depmap.pi

Area Lights

By adding a sphere declaration to a textured_light, it is turned into an area light. The current
implementation is a bit rough for long and narrow shadows, but in general gives very good results. A
typical declaration of an area light is:

textured_light {
 color white
 sphere <8, 10, 0>, 1
 }

Sample file: spoty.pi

Light Source Topics
Positional Lights

Spot Lights

Textured Lights

Directional Lights

Depth Mapped Lights

Area Lights

Background Color
The background color is the one used if the current ray does not strike any objects. The color can be
any vector expression, although is usually a simple RGB color value.

The format of the declaration is:
background <R,G,B>

or
background color

If no background color is set black will be used.

An interesting trick that can be performed with the background is to use an image map as the
background color (it is also a way to translate from one Targa format to another). The way this can
be done is:

background planar_imagemap(image("test1.tga", P)

The background also affects the opacity channel in 16 and 32 bit Targa output images. If any
background contributes directly to the pixel (not as a result of reflection or refraction), then the
attribute bit is cleared in a 16 bit color and the attribute byte is set to the percentage of the pixel that
was covered by the background in a 32 bit color.

In order to extend the flexibility of the background, the meanings of various runtime variables are set
uniquely.

u,x How far across the output image (from 0 at left to 1 at right)
v,z How far down the output image (from 0 at bottom to 1 at top)
W <0,0,0>
P Same as <x, 0, z>
N Direction of the current ray
I <0,0,0>
U Same as <u, v, w>
w Level of recursion (0 for eye rays, higher for reflected and refracted rays)

As an example, suppose you wanted to have an image appear in the background, but you didn't want
to have the image appear in any reflections. Then you could define the background with the
following expression:

background (w == 0 ? planar_imagemap(img1, P) : black)

If you wanted to have one image in the background, and another that appears in reflections (or

refracted rays), then you could use the following expression:

background (w == 0 ? planar_imagemap(img1, P)
spherical_imagemap(img2, N))

The previous background expression fits img1 exactly into the output image and maps img2
completely around the entire scene. This might be useful if you have a map of stars that you want to
appear in reflections, but still want to have an image as the background.

Global Haze
The global haze is a color that is added based on how far the ray traveled before hitting the surface.
The format of the expression is:

haze coeff, starting_distance, color

The color you use should almost always be the same as the background color. The only time it would
be different is if you are trying to put haze into a valley, with a clear sky above (this is a tough trick, but
looks nice). A example would be:

haze 0.8, 3, midnight_blue

The value of the coeff ranges from 0 to 1, with values closer to 0 causing the haze to thicken, and
values closer to 1 causing the haze to thin out. I know it seems backwards, but it is working and I
don't want to break anything.

Textures
Polyray supports a few simple procedural textures: a standard shading model, a checker texture, a
hexagon texture, and a general purpose (3D noise based) texture. In addition, a very flexible
(although slower) functional texture is supported. Individual textures can be combined in various
ways to create new ones. Texture types that help to combine other textures include: layered
textures, indexed textures, and summed textures. (See the topics Indexed Textures and Texture
Maps, Layered Textures and Summed Textures).

texture { [texture declaration] }
or

texture_sym

Where "texture_sym" is a previously defined texture declaration.

Texture Topics
Procedural Textures

Functional Textures

Procedural Textures
Procedural textures (i.e. checker, matte_white, shiny_red, ...) are ones that are completely defined at
the time the data file is read. Textures that are evaluated during rendering are described in the topic
Functional Textures.

Standard Shading Model
Unlike many other ray-tracers, surfaces in Polyray do not have a single color that is used for all of the
components of the shading model. Instead, a number of characteristics of the surface must be
defined (with a matte white being the default).

A surface declaration has the form:
surface {
 [surface definitions]
 }

For example, the following declaration is a red surface with a white highlight, corresponding to the
often seen "plastic" texture:

define shiny_red
texture {
 surface {
 ambient red, 0.2
 diffuse red, 0.6
 specular white, 0.8
 microfacet Reitz 10
 }
 }

The allowed surface characteristics that can be defined are:

color Color if not given in another component.

ambient Light given off by the surface

diffuse Light reflected in all directions

specular Amount and color of specular highlights

reflection Reflectivity of the surface

transmission Amount and color of refracted light

microfacet Specular lighting model (see below)

The lighting equation used is (in somewhat simplified terms):
L = ambient + diffuse + specular + reflected + transmitted

or

L = Ka + Kd * (l1 + l2 + ...) + Ks * (l1 + l2 + ...) + Kr + Kt

Where l1, l2, ... are the lights, Ka is the ambient term, Kd is the diffuse term, Ks is the specular term,
Kr is the reflective term, and Kt it the transmitted (refractive) term. Each of these terms has a scale
value and a filter value (the filter defaults to white/clear if unspecified).

See the file "colors.inc" for a number of declarations of surface characteristics, including: mirror,
glass, shiny, and matte.

For lots of detail on lighting models, and the theory behind how color is used in computer generated
images, run (don't walk) down to your local computer bookstore and get: "Illumination and Color in 
Computer Generated Imagery", Roy Hall, 1989 Springer Verlag.

Source code in the back of that book was the inspiration for the microfacet distribution models
implemented for Polyray.

Note that you don't really have to specify all of the color components if you don't want to. If the color
of a particular part of the surface declaration is not defined, then the value of the "color" component
will be examined to see if it was declared. If so, then that color will be used as the filter. As an
example, the declaration above could also be written as:

define shiny_red
texture {
 surface {
 color red
 ambient 0.2
 diffuse 0.6
 specular white, 0.8
 microfacet Reitz 10
 }
 }

Ambient Light
Ambient lighting is the light given off by the surface itself. This will be a constant amount,
independent of any lights that may be in the scene.

The format of the declaration is:
ambient color, scale

or
ambient scale

As always, color indicates either an RGB triple like <1.0,0.7,0.9>, or a named color. Scale is the
contribution that ambient gives to the overall amount light coming from the pixel. The scale values
should lie in the range 0.0 -> 1.0

Diffuse Light
Diffuse lighting is the light given off by the surface under stimulation by a light source. The intensity
of the diffuse light is directly proportional to the angle of the surface with respect to the light.

The format of the declaration is:
diffuse color, scale

or
diffuse scale

The only information used for diffuse calculations is the angle of incidence of the light on the surface.

Specular Highlights
The format of the declaration is:

specular color, scale
or

specular scale

The means of calculating specular highlights is by default the Phong model. Other models are
selected through the Microfacet distribution declaration.

Reflected Light
Reflected light is the color of whatever lies in the reflected direction as calculated by the relationship
of the view angle and the normal to the surface.

The format of the declaration is:
reflection scale

or
reflection color, scale

Typically, only the scale factor is included in the reflection declaration, this corresponds to all colors
being reflected with intensity proportional to the scale. A color filter is allowed in the reflection
definition, and this allows the modification of the color being reflected (I'm not sure if this is useful, but
I included it anyway).

Transmitted Light
Transmitted light is the color of whatever lies in the refracted direction as calculated by the
relationship of the view angle, the normal to the surface, and the index of refraction of the material.

The format of the declaration is:
transmit scale, ior

or
transmit color, scale, ior

Typically, only the scale factor is included in the transmitted declaration, this corresponds to all colors
being transmitted with intensity proportional to the scale. A color filter is allowed in the transmitted
definition, and this allows the modification of the color being transmitted by making the transmission
filter different from the color of the surface itself.

It is possible to have surfaces with colors very different than the one closest to the eye become
apparent. (See "gsphere.pi" for an example, a red sphere is in the foreground, a green sphere and a
blue sphere behind. The specular highlights of the red sphere go to yellow, and blue light is
transmitted through the red sphere.)

A more complex file is "lens.pi" in which two convex lenses are lined up in front of the viewer. The
magnified view of part of a grid of colored balls is very apparent in the front lens.

Microfacet Distribution
The microfacet distribution is a function that determines how the specular highlighting is calculated for
an object.

The format of the declaration is:

microfacet Distribution_name falloff_angle
or

microfacet falloff_angle

The distribution name is one of: Blinn, Cook, Gaussian, Phong, Reitz. The falloff angle is the angle
at which the specular highlight falls to 50% of its maximum intensity. (The smaller the falloff angle,
the sharper the highlight.) If a microfacet name is not given, then the Phong model is used.

The falloff angle must be specified in degrees, with values in the range 0 to 45. The falloff angle
corresponds to the roughness of the surface, the smaller the angle, the smoother the surface. A very
wide falloff angle will give the same sort of shading that diffuse shading gives.

NOTE:    As stated before, look at the book by Hall.    I have found falloff values of 5-10 degrees
to give nice tight highlights.    Using falloff angle may seem a bit backwards from other 
raytracers, which typically use a value defining the power of a cosine function to define 
highlight size.    When using a power value, the higher the power, the smaller the highlight.    
Using angles seems a little tidier since the smaller the angle, the smaller the highlight.

Checker
The checker texture has the form:

texture {
 checker texture1, texture2
 }

where texture1 and texture2 are texture declarations (or texture constants).

A standard sort of checkered plane can be defined with the following:
// Define a matte red surface
define matte_red
texture {
 surface {
 ambient red, 0.1
 diffuse red, 0.5
 }
 }

// Define a matte blue surface
define matte_blue
texture {
 surface {
 ambient blue, 0.2
 diffuse blue, 0.8
 }
 }

// Define a plane that has red and blue checkers
object {
 disc <0, 0.01, 0>, <0, 1, 0>, 5000
 texture {
 checker matte_red, matte_blue
 }
 }

For a sample file, look at "spot0.pi". This file has a sphere with a red/blue checker, and a plane with

a black/white checker.

NOTE:    A distinct problem with checkerboards is one of aliasing at great distances.    To help 
with aliasing, either use larger checks (by adding a scale to the texture), or make sure there is 
a very low light level at great distances.

Hexagon
The hexagon texture is oriented in the x-z plane, and has the form:

texture {
 hexagon texture1, texture2, texture3
 }

This texture produces a honeycomb tiling of the three textures in the declaration. Remember that
this tiling is with respect to the x-z plane, if you want it on a vertical wall you will need to rotate the
texture.

Noise Surfaces
The complexity and speed of rendering of the noise surface type lies between the standard shading
model and the special surfaces described below. It is an attempt to capture a large number of the
standard 3D texturing operations in a single declaration.

A noise surface declaration has the form:
texture {
 noise surface {
 [noise surface definition]
 }
 }

The allowed surface characteristics that can be defined are:

color <r, g, b> Basic surface color (used if the noise function
generates a value not contained in the color map)

ambient scale Amount of ambient contribution

diffuse scale Diffuse contribution

specular color, scale Amount and color of specular highlights, if the color
is not given then the body color is used.

reflection scale Reflectivity of the surface

transmission scale, ior Amount of refracted light

microfacet kind angle Specular lighting model (see the description of a
standard surface)

color_map(map_entries) Define the color map (for further details see the topic
on color map definitions)

bump_scale fexper How much the bumpiness affects the normal to the
surface

frequency fexper Affects the wavelength of ripples and waves

phase fexper Affects the phase of the ripples and waves

lookup_fn index Selects a predefined lookup function

normal_fn index Selects a predefined normal modifier

octaves fexper Number of octaves of noise to use

position_fn index How the intersection point is used in the process of
generating a noise texture

position_scale fexper Amount of contribution of the position value to the
overall texture

turbulence fexper Amount of contribution of the noise to the overall
texture.

The way the final color of the texture is decided is by calculating a floating point value using the
following general formula:

index = lookup_fn(position_scale * position_fn + turbulence * noise3d(P, octaves))

The index value that is calculated is then used to lookup a color from the color map. This final color
is used for the ambient, diffuse, reflection and transmission filters. The functions that are currently
available, with their corresponding indices are:

Position functions:

Index Effect
1 x value in the object coordinate system

2 x value in the world coordinate system

3 Distance from the z axis

4 Distance from the origin

5 Distance around the y-axis (ranges from 0 -> 1) default: 0.0

Lookup functions:

Index Effect
1 sawtooth function, result from 0 -> 1

2 sin function, result from 0->1

3 ramp function, result from 0->1 default: no modification made

Definitions of these function numbers that make sense are:

define position_plain 0
define position_objectx 1
define position_worldx 2
define position_cylindrical 3
define position_spherical 4
define position_radial 5

define lookup_plain 0
define lookup_sawtooth 1
define lookup_sin 2
define lookup_ramp 3

An example of a texture defined this way is a simple white marble:

define white_marble_texture
texture {
 noise surface {
 color white
 position_fn position_objectx
 lookup_fn lookup_sawtooth
 octaves 3
 turbulence 3
 ambient 0.2
 diffuse 0.8
 specular 0.3
 microfacet Reitz 5
 color_map(
 [0.0, 0.8, <1, 1, 1>, <0.6, 0.6, 0.6>]
 [0.8, 1.0, <0.6, 0.6, 0.6>, <0.1, 0.1, 0.1>])
 }
 }

In addition to coloration, the bumpiness of the surface can be affected by selecting a function to
modify the normal. The currently supported normal modifier functions are:

Index Effect
1 Make random bumps in the surface

2 Add ripples to the surface

3 Give the surface a dented appearance default: no change

Definitions that make sense are:
define default_normal 0
define bump_normal 1
define ripple_normal 2
define dented_normal 3

See also the file "texture.txt" for a little more explanation and a few more texture definitions.

Sample file: textures.inc

Indexed Textures and Texture Maps
A texture map is declared in a manner similar to color maps. There is a list of value pairs and texture
pairs, for example:

 define index_tex_map
 texture_map ([-2, 0, red_blue_check, bumpy_green],
 [0, 2, bumpy_green, reflective_blue])

Note that for texture maps there is a required comma separating each of the entries.

These texture maps are complimentary to the indexed texture (see below). Two typical uses of
indexed textures are to use solid texturing functions to select (and optionally blend) between complete
textures rather than just colors, and to use image maps as a way to map textures to a surface.

For example, using the texture map above on a sphere can be done accomplished with the following:
object {

 sphere <0, 0, 0>, 2
 texture { indexed x, index_tex_map }
 }

The indexed texture uses a lookup function (in example above a simple gradient along the x axis) to
select from the texture map that follows. See the data file indexed1.pi for the complete example.

As an example of using an image map to place textures on a surface, the following example uses
several textures, selected by the color values in an image map. The function indexed_map returns
the color index value from a color mapped image (or uses the red channel in a raw image). The
example below is equivalent to creating a material map in the POV-Ray raytracer.

object {
 sphere <0, 0, 0>, 1
 texture {
 indexed indexed_map(image("txmap.tga"), <x, 0, y>, 1),
 texture_map([1, 1, mirror, mirror],
 [2, 2, bright_pink, bright_pink],
 [3, 3, Jade, Jade])
 translate <-0.5, -0.5, 0> // center image
 }
}

In this example, the image is oriented in the x-y plane and centered on the origin. The only
difference between a indexed_map and a planar_imagemap is that the first (indexed_map) returns
the index of the color in the image and the second returns the color itself. Note that the texture map
shown above has holes in it (between the integer values), however this isn't a problem as the
indexed_map function will only produce integers.

Layered Textures
Layered textures allow you to stack multiple textures on top of each other. If a part of the texture is
not completely opaque (non-zero alpha), then the layers below will show through. For example, the
following texture creates a texture with a marble outer layer and a mirrored bottom layer and applies it
to a sphere:

include "colors.inc"

define marble_alpha_map
 color_map([0.0, 0.2, white, 0, white, 0]
 [0.2, 0.5, white, 0, black, 0.2]
 [0.6, 1.0, black, 0.2, black, 1])
define mirror_veined_marble
texture {
 layered
 texture {
 special shiny { color marble_alpha_map[marble_fn] }
 },
 mirror
 }

object {
 sphere <0, 0, 0>, 2
 mirror_veined_marble
 }

Sample files: Stone1-Stone24, layer1.pi, layer2.pi

Summed Textures
Summed textures simply add weighted amounts of a number of textures together to make the final
color. The syntax is:

texture {
 summed f1, tex1, f2, tex2, ...
 }

The expressions f1, f2, ... are numeric expressions. The expressions tex1, ... are textures.

Sample file: blobtx.pi

Procedural Texture Topics
Standard Shading Model

Ambient Light

Diffuse Light

Specular Hightlights

Reflected Light

Transmitted Light

Microfacet Distribution

Checker

Hexagon

Noise Surfaces

Layered Textures

Summed Textures

Functional Texture Topics
Color Maps

Using CMAPPER

Image Maps

Bump Maps

Functional Textures
The most general textures in Polyray are functional textures. These textures are evaluated at run-time
based on the expressions given for the components of the lighting model. The general syntax for a
surface using a functional texture is:

special surface {
 [surface declaration]
}

In addition to the components usually defined in a surface declaration, it is possible to define a
function that deflects the normal, and a "body" color that will be used as the color filter in the ambient,
diffuse, etc. components of the surface declaration. The format of the two declarations are:

color vector
and

normal vector

An example of how a functional texture can be defined is:
define sin_color_offset (sin(3.14*fmod(x*y*z,1)+otheta)+1)/2

define sin_color <sin_color_offset, 0, 1 - sin_color_offset>

define xyz_sin_texture
 texture {
 special surface {
 color sin_color
 ambient 0.2
 diffuse 0.7
 specular white, 0.2
 microfacet Reitz 10
 }
 }

In this example, the color of the surface is defined based on the location of the intersection point
using the vector defined as "sin_color".

Sample files: cossph.pi, cwheel.pi.

Color Maps
Color maps are generally used in noise textures and functional textures. They are a way of
representing a spectrum of colors that blend from one into another. Each color is represented as
RGB, with an optional alpha (transparency) value. The format of the declaration is:

color_map([low0, high0, <r0, g0, b0>, a0, <r1, g1, b1>, a1]
 [low1, high1, <r2, g2, b2>, a2, <r3, g3, b3>, a3]
 ...
 [lowx, highx, <rx, gx, bx>, ax, <ry, gy, by>, ay])

Note that there are no commas between entries in the color map even though commas are required
within each entry. (This is a holdover to retain compatibility with earlier versions of Polyray.) If you
don't need any transparency in the color map, then the following declaration could be used:

color_map([low0, high0, <r0, g0, b0>, <r1, g1, b1>]
 [low1, high1, <r2, g2, b2>, <r3, g3, b3>]
 ...
 [lowx, highx, <rx, gx, bx>, <ry, gy, by>])

In this case, the alpha is set to 0 for all colors created by the color map. Note that it is possible to
mix colors with and without alpha value.

Note: If there is an alpha value in the color map, then the amount of alpha is used as the scale 
for the transmit component of the surface.    To turn off this automatic transparency, use 
transmit 0.

Using CMAPPER
A good way to build color maps for layered textures is with ColorMapper,

Written by: SoftTronics, Lutz + Kretzschmar

This is available as CMAP.ZIP in the forum Graphdev on CompuServe. This program allows you to
build color maps with varying colors and transparency values. The output of this program does have
to be massaged a little bit to make it into a color map as Polyray understands it. In order to help with
this process an IBM executable, makemap.exe has been included. To use this little program, you
follow these steps:

1) Run CMAPPER to create a color map in the standard output (not the POV-Ray output
format).

2) run makemap on that file, giving a name for the new Polyray color map definition

3) Add this definition to your Polyray data file.

If you saved your map as foo.map, and you wanted to add this color map to the Polyray data file
foo.inc, with the name of foox_map, you would then run makemap the following way:

makemap foo.map foox_map >> foo.inc

This makes the translation from CMAPPER format to Polyray format, and appends the output as,
define foox_map color_map(...), to the file foo.inc.

Image Maps
A type of coloring that can be used involves the use of an existing image projected onto a surface.
There are four types of projection supported, planar, cylindrical, spherical, and environment. Input
files for use as image maps may be 8, 16, 24, and 32 bit uncompressed, RLE compressed, or color
mapped Targa files.

The declaration of an image map is:
image("imfile.tga")

Typically, an image will be associated with a variable through a definition such as:
define myimage image("imfile.tga")

The image is projected onto a shape by means of a "projection". The four types of projection are
declared by:

planar_imagemap(image, coordinate [, repeat]),
cylindrical_imagemap(image, coordinate [, repeat]),
spherical_imagemap(image, coordinate)
environment_map(environment(image1, image2, image3, image4,
 image5, image6))

The planar projection maps the entire raster image into the coordinates 0 <= x <= 1, 0 <= z <= 1.
The vector value given as "coordinate" is used to select a color by multiplying the x value by the
number of columns, and the z value by the number of rows.

The color appearing at that position in the raster will then be returned as the result. If a "repeat"
value is given then entire surface, repeating between every integer Value of x and/or z.

The cylindrical projection wraps the image about a cylinder that has one end at the origin and the
other at <0, 1, 0>. If a "repeat" value is given, then the image will be repeated along the y-axis, if
none is given, then any part of the object that is not covered by the image will be given the color of
pixel (0, 0). The spherical projection wraps the image about an origin centered sphere. The top and
bottom seam are folded into the north and south poles respectively. The left and right edges are
brought together on the positive x axis.

The environment map wraps six images around a point. This method is a standard way to fake
reflections by wrapping the images that would be seen from a point inside an object around the
object. A sample of this technique can be seen by rendering "room1.pi" (which generates the
images) followed by rendering "room0.pi" (which wraps the images around a sphere).

Following are a couple of examples of objects and textures that make use of image maps:
define hivolt_image image("hivolt.tga")
define hivolt_tex

texture {
 special surface {
 color cylindrical_imagemap(hivolt_image, P, 1)
 ambient 0.9
 diffuse 0.1
 }
 scale <1, 2, 1>
 translate <0, -1, 0>
 }
object { cylinder <0, -1, 0>, <0, 1, 0>, 3 hivolt_tex }

and

define disc_image image("test.tga")
define disc_tex
texture {
 special surface {
 color planar_imagemap(disc_image, P)
 ambient 0.9
 diffuse 0.1
 }
 translate <-0.5, 0, -0.5>
 scale <7*4/3, 1, 7>
 rotate <90, 0, 0>
 }
object {
 disc <0, 0, 0>, <0, 0, 1>, 6
 u_steps 10
 disc_tex
 }

Bump Maps
Bump maps are declared using the same sort of projections as image maps (excepting environment
maps). The following are the valid declarations of bump maps:

planar_bumpmap(image, coordinate [, bump size]),
 cylindrical_bumpmap(image, coordinate [, bump size]),
 spherical_bumpmap(image, coordinate [, bump size])

Instead of an optional repeat argument, bumpmaps have an optional bump size argument. If this
argument is left out, then the bump size is set to one. Note that negative bump values are allowed
and cause the bumps to appear to project the other way.

Any Targa image can be used, but for best results greyscale or color mapped images are best. The
following declarations show how a bump map can be applied to objects:

include "colors.inc"

define tile_bumps image("tile1.tga")

define bumpmap_red1
texture {
 special shiny {
 color red
 normal planar_bumpmap(tile_bumps, <8*u, 0, 6*v>, 1)
 }

 }
object {
 object { torus 2, 0.75, <0, -1.25, 0>, <0, 1, 0> }
 + object { cone <0, -2, 0>, 1, <0, 3, 0>, 0 }
 + object { sphere <2, 0, 4>, 2 }
 bumpmap_red1
 }

The bumpmap is declared using u/v coordinates so that it will follow the natural coordinates of the
object. This ensures that it wraps properly around the torus, cone, and sphere in the example above.
There is an automatic wrapping of bump maps, so there will be 8 tiles in the u direction and 6 tiles in
the v direction of each object.

Comments
Comments follow the standard C/C++ formats. Multiple line comments are enclosed by /* ... */ and
single line comments are preceeded by //.

Single line comments are allowed and have the following format:
// [any text to end of the line]

As soon as the two characters "//" are detected, the rest of the line is considered a comment.

Animation Support
An animation is generated by rendering a series of frames, numbered from 0 to some total value.
The declarations in Polyray that support the generation of multiple Targa images are:

total_frames val The total number of frames in the animation

start_frame val The value of the first frame to be rendered

end_frame val The last frame to be rendered

outfile "name"
outfile name

Polyray appends the frame number to this string
in order to generate distinct Targa files.

The values of "total_frames", "start_frame", and "end_frame", as well as the value of the current
frame, "frame", are usable in arithmetic expressions in the input file. Note that these statements
should appear before the use of: total_frames, start_frame, end_frame, or frame as a part of an
expression. Typically I put the declarations right at the top of the file.

WARNING: if the string given for "outfile" is longer than 5 characters, the three digit frame number
that is appended will be truncated by DOS. Make sure this string is short enough or you will end up
overwriting image files.

Sample files: whirl.pi, plane.pi, squish.pi, many others

System Calls
The system call allows you to invoke an external program from within Polyray. This is useful if you
have a program that will generate new data for every frame of an animation. By using system, you
can invoke the external program for every frame of the program, and possibly pass it the frame
number so that it will know the specific data to generate.

The format of the declaration is:

system(arg1, ..., argn)

The arguments are concatenated together (no spaces added) and then passed to the system to
execute. Any numeric or string variable is allowed for an argument. The number of arguments isn't
limited, however the total number of characters in the final string must be less than 255.

One possible use for the system call is to use DTA to extract a particular frame of an animation for
use in an image map. By incrementing the frame number that is retrieved, you can embed an
animation into your own animation.

Conditional Processing
In support of animation generation (and also because I sometimes like to toggle attributes of objects),
Polyray supports limited conditional processing. The syntax for this is:

if (cexper) {
 [object/light/... declarations]
 }
else {
 [other object/light/... declarations]
 }

The sample file "rsphere.pi" shows how it can be used to modify the color characteristics of a moving
sphere.

The use of conditional statements is limited to the top level of the data file. You cannot put a
conditional within an object or texture declaration. i.e.

object {
 if (foo == 42) {
 sphere <0, 0, 0>, 4
 }
 else {
 disc <0, 0, 0>, <0, 1, 0>, 4
 }
 }

is not a valid use of an "if" statement, whereas:
if (foo == 42) {
 object {
 sphere <0, 0, 0>, 4
 }
 }
else {
 object {
 disc <0, 0, 0>, <0, 1, 0>, 4
 }
 }

or:
if (foo == 42)
 object { sphere <0, 0, 0>, 4 }
else if (foo = 12) {
 object { torus 3.0, 1.0, <0, 0, 0>, <0, 1, 0> }
 object { cylinder <0, -1, 0>, <0, 1, 0>, 0.5 }
 }
else
 object { disc <0, 0, 0>, <0, 1, 0>, 4 }

are valid.

NOTE:    The curly braces "{}" are required if there are multiple statements within the 
conditional, and not required if there is a single statement.

Include Files
In order to allow breaking an input file into several files (as well as supporting the use of library files),
it is possible to direct Polyray to process another file. The syntax is:

include "filename"

Be aware that trying to use "#include ..." will fail as Polyray will consider it a comment.

File Flush
Due to unforeseen occurrences, like power outages, or roommates that hit the reset button so they
can do word processing, it is possible to specify how often the output file will be flushed to disk. The
default is to wait until the entire file has been written before a flush (which is a little quicker but you
lose everything if a crash occurs).

The format of the declaration is:
file_flush xxx

The number xxx indicates the maximum number of pixels that will be written before a file flush will
occur. This value can be as low as 1 - this will force a flush after every pixel (only for the very
paranoid).

About Polyray Help
The text for Polyray Help was written by Alexander Enzmann. All
material herein is copyright © 1991 - 1994, Alexander Enzmann.

CompuServe ID:    Alexander Enzmann 70323,2461
Internet Address:    xander@mitre.org

This Help File was produced and edited by Robert McGregor at
Screaming Tiki (tm).

CompuServe ID:    Robert McGregor 73122,3125

POVCAD v4 for Windows
POVCAD is a 3-D modeler for generating data files in various formats and directly exports
Polyray (.PI) and POV-Ray (.POV) scene files and include (.INC) files. Shareware US$35,
not crippled. Requires a mouse.

Features include:

 2-D Curve Editor and spline creation

 Smart Text Editor that creates editable ray tracing scene file text

 Texture Builder to generate texture definitions

 Create native primitives and RAW data files

 Render scene files from within POVCAD

 Extrusion, translation, scaling, rotatation of objects

 Conversion of .DXF to .RAW or .RAW to .DXF for use with ray tracers

 Creation of Polyray lathe/sweep objects

 Conversion of TrueType fonts into Polyray glyph objects

 Creation of animation paths

 Generation and editing of bezier patches

 Creation of custom colors

 Supports positional, spot, directional, and area lights

 Mouse controlled zoom and object manipulation

 Context sensitive Help

 Includes tutorials and much more!

For more info send e-mail to:

Alfonso Hermida, CIS 72114,2060 or Rob McGregor, CIS 73122,3125

MORAY
MORAY is a GUI modeller for POV-Ray 2.x on 386/486. Supports the
plane, cube, sphere, cylinder, torus, cone, disc, heightfield and bezier patch
primitives, and adds tapering, rotational and translational sweeps. You can
add point-, area-, and spotlights, bounding boxes, textures and cameras,
which show the scene in 3D. Shareware US$59, not crippled. Requires
mouse and (S)VGA. Supports VESA.

For information about MORAY send e-mail to:

Lutz Kretzschmar, CIS 100023,2006

Topics
Syntax Surface Declarations

Command Line Options Microfacet Kinds

Initialization File Keywords Special Surface Declarations

Input File Syntax Bumpmap Declarations

Expressions Noise Surface Declarations

Object Declaration Values for position_fn

Shape Declarations Values for normal_fn

Root Solver Declarations Values for lookup_fn

Object Modifier Statements Conditional Processing

Shading Flag Values Particles

Textures Particle Declarations

Texture Declarations Particle Variables

Quick Reference
This is an extremely abbreviated description of the command line flags, initialization file statements,
and data file declarations for Polyray...

Syntax:
polyray datafile [options]

Command Line Options:
-a mode Antialiasing (0=none,1=corner average,2-4=adaptive)

-b pixels Set the maximum number of pixels that will be calculated between
file flushes

-B Flush the output file every scan line

-d  Generate a depth file instead of an image file

-o filename Output file name (default "out.tga")

-p bits/pixel Number of bits per pixel 8/16/24/32 (default 16)

-P palette Which palette option to use [0=grey, 1=666, 2=884]

-q flags Turn on/off various global shading options

-Q Abort if any key is hit during trace

-r renderer Which rendering method: [0=raytrace, 1=scan convert, 2=wireframe,
3=raw triangle information, 4=uv triangles]

-R Resume an interrupted trace

-s samples # of samples per pixel when performing focal blur

-t status_vals Status display type [0=none,1=totals,2=line,3=pixel]

-T threshold Threshold to start oversampling (default 0.2)

-u Write the output file in uncompressed form

-v Trace from bottom to top

-V mode Display mode while tracing (0=none, 1-5=8bit, 6-10=16, 11-15=24)

-W Wait for key before clearing display

-x columns Set the x resolution

-y lines Set the y resolution

-z start_line Start a trace at a specified line

Initialization File ("polyray.ini") Keywords:
abort_test true/false/on/off

alias_threshold [Value to cause adaptive anitaliasing to start]

antialias none/filter/adaptive1/adaptive2

display none/vga1...vga5/hicolor1...hicolor5/truecolor1...truecolor5

max_level [max depth of recursion]

max_samples [# of samples when performing focal blur]

optimizer none/slabs

pallette 884/666/grey

pixel_size [8, 16, 24, 32]

pixel_encoding none/rle

renderer ray_trace/scan_convert/wire_frame/raw_triangles/
uv_triangles

shade_flags [default/bit mask of flags]

shadow_tolerance [minimum distance for blocking objects]

status none/totals/line/pixel

warnings on/off

Any lines starting with "//" will be treated as comments & ignored.
Any lines surrounded with "/*" ... "*/" will be ignored.

Input File Syntax:

[viewpoint statement]
[object declaration]
[conditional statement]
define token expression
define token [object declaration]
define token [surface declaration]

define token [texture declaration]
define token texture_map([a, b, texture1, texture2]
 ...
 [x, y, texturei, texturej])
define token particle { [particle declarations] }
define token transform { [rotate/translate/scale/shear statements] }
total_frames val
start_frame val
end_frame val
outfile "name"
outfile name
file_flush xxx
include "filename"
system(arg1, ..., argn)
background color
background expression
haze coeff, starting_distance, color
light color, location
light location
spot_light color, location, pointed_at, Tightness, Angle, Falloff
spot_light location, pointed_at
textured_light {
 color color_expression
 [sphere center, radius]
 [rotate/translate/... statements]
 }
directional_light color, direction
directional_light direction
depthmapped_light {
 [angle fexper]
 [aspect fexper]
 [at vexper]
 [color expression]
 [depth "depthfile.tga"]
 [from vexper]
 [hither fexper]
 [up vexper]
 }

Expressions:
Floating point operators:

+, -, *, /, ^

Functions returning floats:
acos(x), asin(x), atan(x), atan2(x, y), ceil(x), cos(x), cosh(x),
degrees(x), exp(x), fabs(x), floor(x), fmod(x, y), heightmap(image, P),
indexed(image,P), legendre(l, m, x), ln(x), log(x), max(x, y), min(x,
y), noise(P), noise(P, o), noise(P, <p, n, o>), pow(x, y), radians(x),
sawtooth(x), sin(x), sinh(x), sqrt(x), tan(x), tanh(x), visible(V1, V2),
V1 . V2, |x|

Vector operators:
+, -, * (cross product, or float times a vector)

Functions returning vectors/colors:
brownian(P), brownian(P, S), color_wheel(x, y, z), dnoise(P), dnoise(P,
o), dnoise(P, <p, n, o>), rotate(V1, <xdeg, ydeg, zdeg>), rotate(V1, V2,
deg), reflect(V1, V2) trace(P, D)

Predefined variables:
u, v, x, y, z, P, W, N, I, start_frame, frame, end_frame

Image file manipulation:
environment("file1", "file2", ..., "file6")
image("file")
cylindrical_imagemap(image, V [, repeat flag])
planar_imagemap(image, V [, repeat flag])
spherical_imagemap(image, V [, repeat flag])
heightmap(image, V)
indexed_map(image, V [, repeat flag])
environment_map(V, environment)

Color map:
color_map([v0, v1, Color0, Color1]
 [v2, v3, Color2, Color3]
 ...
 [vx, vy, Colorx, Colory])

color_map([v0, v1, Color0, alpha0, Color1, alpha1]
 [v2, v3, Color2, alpha2, Color3]
 ...
 [vx, vy, Colorx, Colory, alphay])

String manipulation (build single string from a set of string, numerical, or vector arguments):
concat(arg1, arg2, ..., arg3)

Viewpoint declaration:
viewpoint {
 [from vexper] // Default: <0, 0,-1>
 [at vexper] // Default: <0, 0, 0>
 [up vexper] // Default: <0, 1, 0>
 [angle fexper] // Default: 45
 [resolution fexper, fexper] // Default: 256x256
 [aspect fexper] // Default: 1.0

 [hither fexper] // Default: 1.0e-3
 [yon fexper] // Default: 1.0e6
 [max_trace_depth fexper] // Default: 5
 [aperture fexper] // Default: 0
 [focal_distance fexper] // Default: distance between from &
at
 [image_format fexper] // 0 = image, 1 = depth
 [pixelsize fexper] // valid: 8, 16, 24, 32
 [pixel_encoding fexper] // 0 = normal, 1 = RLE
 [antialias fexper] // 0 = none, 1 = filter, 2-4 =
adaptive
 [antialias_threshold fexper] // Default: 0.02
 }

Object Declaration:
object {
 Shape declaration
 [texture declaration]
 [Object modifier declaration]
 }

Shape Declarations:
bezier subdivision_type, flatness_value,
 u_subdivisions, v_subdivision,
 // 16 comma-separated vertices
 [<x0, y0, z0>, <x1, y1, z1>, ..., <x15, y15, z15>]

blob threshold:
blob_component1
[, sphere <x, y, z>, strength, radius]
[, cylinder <x0, y0, z0>, <x1, y1, z1>, strength, radius]
[, plane <nx, ny, nz>, d, strength, distance]

box <x0, y0, z0>, <x1, y1, z1>
cone <x0, y0, z0>, r0, <x1, y1, z1>, r1
cylinder <x0, y0, z0>, <x1, y1, z1>, r
disc <cx, cy, cz>, <nx, ny, nz>, r
disc <cx, cy, cz>, <nx, ny, nz>, ir, or
function f(x,y,z)
glyph contour_count,
 contour num_points1, V11, ..., V1n
 ...
 contour num_pointsm, Vm1, ..., Vmn
gridded "filename", object1 object2 ...
height_field "filename"
smooth_height_field "filename"
height_fn xsize, zsize, min_x, max_x, min_z, max_z, expression
height_fn xsize, zsize, expression
smooth_height_fn xsize, zsize, min_x, max_x, min_z, max_z, expression
smooth_height_fn xsize, zsize, expression
lathe type, direction, total_vertices,
 <vert1.x,vert1.y,vert1.z>

 [, <vert2.x, vert2.y, vert2.z>]
 [, etc. for total_vertices vertices]
nurb u_order, u_vertices, v_order, v_vertices,
 [u_knot1, ..., u_knot(u_order+u_vertices)],
 [v_knot1, ..., v_knot(v_order+v_vertices)],
 [[<vert(1,1)>, ..., <vert(1,v_order)>],
 ...
 [<vert(u_order,1)>, ..., <vert(u_order,v_order)>]]
nurb u_order, u_vertices, v_order, v_vertices,
 [[<vert(1,1)>, ..., <vert(1,v_order)>],
 ...
 [<vert(u_order,1)>, ..., <vert(u_order,v_order)>]]
parabola <x0, y0, z0>, <x1, y1, z1>, r
parametric <fx(u,v), fy(u,v), fz(u,v)>
polygon total_vertices,
 <vert1.x,vert1.y,vert1.z>
 [, <vert2.x, vert2.y, vert2.z>]
 [, etc. for total_vertices vertices]
polynomial f(x,y,z)
sphere <center.x, center.y, center.z>, radius
sweep type, direction, total_vertices,
 <vert1.x,vert1.y,vert1.z>
 [, <vert2.x, vert2.y, vert2.z>]
 [, etc. for total_vertices vertices]
torus r0, r1, <center.x, center.y, center.z>, <dir.x, dir.y, dir.z>
patch <v1.x,v1.y,v1.z>, <n1.x,n1.y,n1.z>, [UV u1, v1,]
 <v2.x,v2.y,v2.z>, <n2.x,n2.y,n2.z>, [UV u2, v2,]
 <v3.x,v3.y,v3.z>, <n3.x,n3.y,n3.z> [, UV u3, v3]
object1 + object2 // Union
object1 * object2 // Intersection
object1 - object2 // Difference
object1 & object2 // Clipping
~object1 // Inverse

Root Solver Declarations (for blobs, polynomials, splined lathes, and tori):
root_solver Ferrari
root_solver Vieta
root_solver Sturm

Object Modifier Statements:
translate <tx, ty, tz>
rotate <rx,ry,rz>
scale <sx,sy,sz>
shear yx, zx, xy, zy, xz, yz
shading_flags flag1+flag2+...

u_steps u
v_steps v
w_steps w
uv_steps u, v
uv_steps u, v, w
uv_bounds u0, u1, v0, v1
bounding_box <x0,y0,z0>, <x1,y1,z1>
displace expression

Shading Flag Values:
1 = Shadow_Check, 2 = Reflect_Check, 4 = Transmit_Check,
8 = Two_Sides, 16 = UV_Check, 32 = Cast_Shadow

Textures:
texture {
 [texture declaration]
 [rotate/translate/scale/shear]
 }

Texture Declarations:
surface { [surface declarations] }
noise surface { [surface declarations] }
noise surface_sym
noise surface_sym { [surface declarations] }
special surface { [surface declarations] }
special surface_sym
special surface_sym { [surface declarations] }
checker texture1, texture2
hexagon texture1, texture2, texture3
layered texture1, texture2, ..., textureN
indexed fn, texture_map([a, b, texture1, texture2]
 ...
 [x, y, texturei, texturej])
indexed fn, texture_map_sym
summed fexper, texture1, ... fexper, textureN

Surface Declarations:
color <r, g, b>
ambient scale
ambient color, scale
diffuse scale
diffuse color, scale

specular color, scale
specular scale
reflection color, scale
reflection scale
transmission color, scale, ior
transmission scale, ior
microfacet kind angle

Microfacet Kinds:
Blinn, Cook, Gaussian, Phong, Reitz.

Special Surface Declarations add the following to Surface Declarations:
position vexper
// Turbulence: P + x * (dnoise(P, o) - <0.5, 0.5, 0.5>)

normal vexper
// Bumps: N + x * (dnoise(P, o) - <0.5, 0.5, 0.5>)

Bumpmap Declarations to use in the normal component of special surfaces:
cylindrical_bumpmap(image, V [, bump size])
planar_bumpmap(image, V [, bump size])
spherical_bumpmap(image, V [, bump size])

Noise Surface Declarations include all surface declarations plus:
color_map(map_entries)
bump_scale fexper
frequency fexper
phase fexper
lookup_fn index
normal_fn index
octaves fexper
position_fn index
position_scale fexper
turbulence fexper

The output of the following function is passed through the lookup function, then into the color
map:

nval = pos * position_scale + turbulence * noise(P, octaves);

Valid values for position_fn are:
0 No position function used (default)

1 X coordinate in object space

2 X coordinate in world space

3 Distance from z-axis

4 Distance from the origin

5 Radial measure (counter clockwise) around y-axis

Valid values for normal_fn are:
0 No modification made to normal (default)

1 Bumpy

2 Rippled

3 Dented

Valid values for lookup_fn are:
0 Use nval directly

1 sawtooth applied to nval

2 sin function

3 ramp function

Conditional Processing:
if (cexper)
 [single declaration]

if (cexper) {
 [object/light/... declarations]
 }
else {
 [other object/light/... declarations]
 }

Particles:
particle { [particle_declarations] }
particle_sym
particle_sym { [particle_declarations] }

Particle Declarations:
birth expression // Particles are born when exper is non-zero
count fexper // # of objects to create when birth is non-zero
death expression // Dies when the expression is non-zero
position vexper // Starting position
velocity vexper // Starting velocity
acceleration vexper // Acceleration added every frame
avoid expression // Any non-null expression invokes avoid
object object_sym // Previously defined object

Particle Variables:

P Current location of the particle

x X location of particle

y Y location of particle

z Z location of particle

I Current velocity of the particle

u Age of the particle

